Skip to main content

Long term evolution of distant retrograde orbits in the Earth-Moon system

Abstract

This work studies the evolution of several Distant Retrograde Orbits (DROs) of varying size in the Earth-Moon system over durations up to tens of millennia. This analysis is relevant for missions requiring a completely hands off, long duration quarantine orbit, such as a Mars Sample Return mission or the Asteroid Redirect Mission. Four DROs are selected from four stable size regions and are propagated for up to 30,000 years with an integrator that uses extended precision arithmetic techniques and a high fidelity dynamical model. The evolution of the orbit’s size, shape, orientation, period, out-of-plane amplitude, and Jacobi constant are tracked. It has been found that small DROs, with minor axis amplitudes of approximately 45,000 km or less decay in size and period largely due to the Moon’s solid tides. Larger DROs (62,000 km and up) are more influenced by the gravity of bodies external to the Earth-Moon system, and remain bound to the Moon for significantly less time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    Obtained December 2014 from https://boutell.com/fracster-src/doubledouble/doubledouble.html.

References

  1. Benest, D.: Astron. Astrophys. 32, 39 (1974)

    ADS  Google Scholar 

  2. Benest, D.: Astron. Astrophys. 45, 353 (1975)

    ADS  Google Scholar 

  3. Benest, D.: Astron. Astrophys. 54, 563 (1977)

    ADS  Google Scholar 

  4. Bezrouk, C., Parker, J.S.: AIAA/AAS Astrodynamics Specialist Conference (14-4424) (2014)

  5. Bezrouk, C., Parker, J.S.: AAS/AIAA Space Flight Mechanics Meeting (AAS 15-302) (2015)

  6. Broucke, R.A.: Periodic orbits in the restricted three-body problem with earth-moon masses. Technical report 32-1168, Jet Propulsion Laoratory (1968)

  7. Dekker, T.J.: Numer. Math. 18, 224–242 (1971)

    MathSciNet  Article  Google Scholar 

  8. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides de430 and de431. IPN Progress Report 42-196 (2014)

  9. Gottlieb, R.G.: Fast gravity, gravity partials, normalized gravity, gravity gradient torque and magnetic field: derivation, code and data. Technical Report NASA Contractor Report 188243, NASA Lyndon B. Johnson Space Center (February 1993)

  10. Hénon, M.: Astron. Astrophys. 1, 223 (1969)

    ADS  Google Scholar 

  11. Hénon, M.: Astron. Astrophys. 9, 24 (1970)

    ADS  Google Scholar 

  12. Howell, K.C.: Celest. Mech. 32(1), 53 (1984)

    ADS  Article  Google Scholar 

  13. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms, 2nd edn. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  14. Lam, T., Whiffen, G.J.: Adv. Astronaut. Sci. 05(110), 5 (2005)

    Google Scholar 

  15. Lara, M., Russell, R., Villac, B.: 15th AAS/AIAA Spaceflight Mechanics Meeting AAS 05-2189 (2005)

  16. Lara, M., Russell, R., Villac, B.F.: Acta Astronaut. 69, 186–199 (2011)

    ADS  Article  Google Scholar 

  17. Lundberg, J.B., Schutz, B.E.: J. Guid. 11(1), 31 (1988)

    Article  Google Scholar 

  18. Ming, X., Shijie, X.: Acta Astronaut. 65, 27–39 (2009)

    Article  Google Scholar 

  19. Murray, C.D., Dermott, S.F.: Solar System Dynamics, 1st edn. Cambridge University Press, New York (1999)

    MATH  Google Scholar 

  20. Parker, J.S., Bezrouk, C.: AAS/AIAA Space Flight Mechanics Meeting (AAS 15-331) (2015)

  21. Petit, G., Luzum, B.: Iers conventions (2010). IERS Technical note 36, International Earth Rotation Service (2010). http://www.iers.org/TN36/

  22. Priest, D.M.: On properties of floating point arithmetics: numerical stability and the cost of accurate computations. PhD thesis, University of California, Berkeley (November 1992)

  23. Scott, C., Spencer, D.: Astrodynamics Specialist Conference and Exhibit (6431) (2008)

  24. Shewchuk, J.R.: Discrete Comput. Geom. 18(3), 305 (1997)

    MathSciNet  Article  Google Scholar 

  25. Strange, N., Landau, D., McElrath, T., Lantoine, G., Lam, T.: International Electric Propulsion Conference (2013-321) (2013)

  26. Vallado, D.A.: Fundamentals of Astrodynamics and Applications, 3rd edn. Microcosm Press, Hawthorne (2007)

    MATH  Google Scholar 

  27. Villac, B.F., Aiello, J.J.: 15th AAS-AIAA Spaceflight Mechanics Meeting AAS 05-0150 (2005)

Download references

Acknowledgements

We thank Joshua Hopkins, William Pratt, and their team at the Lockheed Martin Space Systems Company for their valuable insights and probing questions. This work has been partially funded by the Lockheed Martin Space Systems Company. Research for this paper was conducted with Government support under contact FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Collin Bezrouk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bezrouk, C., Parker, J.S. Long term evolution of distant retrograde orbits in the Earth-Moon system. Astrophys Space Sci 362, 176 (2017). https://doi.org/10.1007/s10509-017-3158-0

Download citation

Keywords

  • Distant retrograde orbit
  • Dtability
  • Variable precision arithmetic