Skip to main content
Log in

Nonlinear whistler wave model for lion roars in the Earth’s magnetosheath

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth’s magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth’s magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of \(\mathit{IMP}\ 6\) plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of −4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of −3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth’s magnetosheath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akhiezer, A.I., Akhiezer, A.I., Polovin, R.V., Sitenko, A.G., Stepanov, K.N.: Plasma Electrodynamics. Vol. 2. Nonlinear Theory and Fluctuations. Pergamon, New York (1975)

    Google Scholar 

  • Baumjohann, W., Treumann, R.A., Georgescu, E., Haerendel, G., Fornacon, K.-H., Auster, U.: Ann. Geophys. 17, 1528–1534 (1999)

    Article  ADS  Google Scholar 

  • Baumjohann, W., Georgescu, E., Fornacon, K.-H., Auster, H.U., Treumann, R.A., Haerendel, G.: Ann. Geophys. 18, 406–410 (2000)

    Article  ADS  Google Scholar 

  • Bhattacharjee, A., Ng, C.S., Spangler, S.R.: Astrophys. J. 494, 409 (1998)

    Article  ADS  Google Scholar 

  • Biskamp, D., Schwarz, E., Drake, J.F.: Phys. Rev. Lett. 76, 1264 (1996)

    Article  ADS  Google Scholar 

  • Burman, R.R.: Publ. Astron. Soc. Jpn. 27, 511 (1975)

    ADS  Google Scholar 

  • Cornilleau-Wehrlin, N., Chauveau, P., Louis, S., Meyer, A., Nappa, J.M., Perraut, S., Rezeau, L., Robert, P., Roux, A., de Velledary, C., de Conchy, Y., Friel, L., Harvey, C.C., Hubert, D., Lacombe, C., Manning, R., Wouters, F., Lefeuvre, F., Parrot, M., Pincon, J.L., Poirier, B., Kofman, W., Louarn, P.: Space Sci. Rev. 79, 107–136 (1997)

    Article  ADS  Google Scholar 

  • Davidson, R.C.: Methods in Nonlinear Plasma Theory. Academic, New York (1972)

    Google Scholar 

  • Dwivedi, N.K., Sharma, R.P.: Phys. Plasmas 20, 042308 (2013)

    Article  ADS  Google Scholar 

  • Dwivedi, N.K., Batra, K., Sharma, R.P.: J. Geophys. Res. 117, A07201 (2012)

    Article  ADS  Google Scholar 

  • Gary, S.P., Saito, S., Li, H.: Geophys. Res. Lett. 35(2), L02104 (2008)

    Article  ADS  Google Scholar 

  • Goldstein, B.E., Tsurutani, B.T.: J. Geophys. Res. 89, 2789–2810 (1984)

    Article  ADS  Google Scholar 

  • Hasegawa, A.: Plasma Instabilities and Nonlinear Effects. Springer, New York (1975)

    Book  Google Scholar 

  • Kadomtsev, B.B.: Plasma Turbulence. Academic, New York (1965)

    Google Scholar 

  • Krafft, C., Volokitin, A.: Ann. Geophys. 21, 1393 (2003)

    Article  ADS  Google Scholar 

  • Maksimovic, M., Santolik, C.C., Lacombe, C., de Conchy, Y., Hubert, D., Pantellini, F., Cornilleau-Werhlin, N., Dandouras, I., Lucek, E.A., Balogh, A.: Ann. Geophys. 19, 1429–1438 (2001)

    Article  ADS  Google Scholar 

  • Masood, W., Schwartz, S.J., Maksimovic, M., Fazakerley, A.N.: Ann. Geophys. 24, 1725–1735 (2006)

    Article  ADS  Google Scholar 

  • Ng, C.S., Bhattacharjee, A., Germaschewiski, K., Galtier, S.: Phys. Plasmas 10, 1954 (2003)

    Article  ADS  Google Scholar 

  • Nishida, A.: Geophys. Res. Lett. 21, 2871–2873 (1994)

    Article  ADS  Google Scholar 

  • Palmadesso, P., Papadopoulos, K.: Waves and Instabilities in Space Plasmas. Reidel, Dordrecht (1979)

    Book  Google Scholar 

  • Qureshi, M.N.S., Nasir, W., Masood, W., Yoon, P.H., Shah, H.A., Schwartz: J. Geophys. Res. 119, 10,059–10,067 (2014)

    Article  Google Scholar 

  • Rodriguez, P.: J. Geophys. Res. 90, 241–248 (1985)

    Article  ADS  Google Scholar 

  • Roth, I.: Planet. Space Sci. 55, 2319 (2007)

    Article  ADS  Google Scholar 

  • Sagdeev, R.Z., Galeev, A.A.: Nonlinear Plasma Theory. Benjamin, New York (1969)

    MATH  Google Scholar 

  • Saito, S., Gary, S.P., Li, H., Narita, Y.: Phys. Plasmas 15, 102305 (2008)

    Article  ADS  Google Scholar 

  • Santolík, O., Gurnett, D.A., Pickett, J.S., Parrot, M., Cornilleau–Wehrlin, N.: J. Geophys. Res. 108, 1278 (2003)

    Article  Google Scholar 

  • Sharma, R.P., Goldstein, M.L., Dwivedi, N.K., Chauhan, P.K.: J. Geophys. Res. 115, A12207 (2010)

    ADS  Google Scholar 

  • Smith, E.J., Tsurutani, B.T.: J. Geophys. Res. 81, 2261–2266 (1976)

    Article  ADS  Google Scholar 

  • Smith, E.J., Holzer, R.E., McLeod, M.G., Russel, C.T.: J. Geophys. Res. 72, 4803 (1967)

    Article  ADS  Google Scholar 

  • Smith, E.J., Holzer, R.E., Russel, C.T.: J. Geophys. Res. 74, 3027 (1969)

    Article  ADS  Google Scholar 

  • Stawicki, O., Gary, S.P., Li, H.: J. Geophys. Res. 106, 8273 (2005)

    Article  ADS  Google Scholar 

  • Thorne, R.M., Tsurutani, B.T.: Nature 293, 384–386 (1981)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Smith, E.J., Anderson, R.R., Ogilvie, K.W., Scudder, J.D., Baker, D.N., Bame, S.J.: J. Geophys. Res. 87, 6060–6072 (1982)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Verkhoglyadov, O.P., Lakhina, G.S., Yagitani, S.: J. Geophys. Res. 114, A03207 (2009)

    ADS  Google Scholar 

  • Tsurutani, B.T., Falkowski, B.J., Verkhoglyadov, O.P., Pickett, J.S., Santolík, O., Lakhina, G.S.: J. Geophys. Res. 116, A09210 (2011)

    ADS  Google Scholar 

  • Vedenov, A.A.: Theory of Turbulent Plasma. Elsevier, New York (1968)

    MATH  Google Scholar 

  • Vocks, C., Salem, C., Lin, R.P., Mann, G.: Astrophys. J. 627, 540 (2005)

    Article  ADS  Google Scholar 

  • Wei, X.H., Cao, J.B., Zhou, G.C., et al.: J. Geophys. Res. 112, A10225 (2007)

    Article  ADS  Google Scholar 

  • Yoon, P.H.: Phys. Plasmas 7, 4858 (2000)

    Article  ADS  Google Scholar 

  • Yoon, P.H., Ziebell, L.F., Gaelzer, R., Pavan, J.: Phys. Plasmas 19, 102303 (2012)

    Article  ADS  Google Scholar 

  • Yoon, P.H., Ziebell, L.F., Kontar, E.P., Schlickeiser, R.: Phys. Rev. E 93, 033203 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, Y., Matsumoto, H., Kojima, H.: J. Geophys. Res. 103, 4615–4626 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors like to thank Prof. R.P. Sharma for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dwivedi, N.K., Singh, S. Nonlinear whistler wave model for lion roars in the Earth’s magnetosheath. Astrophys Space Sci 362, 172 (2017). https://doi.org/10.1007/s10509-017-3156-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3156-2

Keywords

Navigation