The storm-time assessment of GNSS-SBAS performance within low latitude African region using a testbed-like platform

Abstract

A Satellite Based Augmentation System (SBAS) is designed to improve Global Navigation Satellite Systems (GNSS) in terms of integrity, accuracy, availability and continuity. The main limitation to SBAS performance optimization is the ionosphere, and this is more critical in low latitude. During geomagnetically disturbed periods the role of storm-time winds is important because they modify the atmospheric composition toward low latitudes. An index of ionospheric disturbance, the relative percentage of deviation of the vertical Total Electron Content (TEC) from the quiet level (DvTEC) at each station was evaluated to study positive and negative phases of the geomagnetic storms. The rate of change of TEC index (ROTI) over all the GNSS stations was estimated to evaluate equatorial ionospheric gradients and irregularities. From the study it is observed that the positive deviations are more frequent than negative ones. The availability map, which is the mean of the combine Vertical Protection Level (VPL) and Horizontal Protection Level (HPL) are used for the SBAS performance. The cases of moderate and minor storms studied during the months of July and October 2013 showed that the SBAS system performance during the disturbed periods depends on the local time in which the storm occurs, geographic longitude and other phenomena that need further study. During the storm-time conditions considered, three out of seven geomagnetic storms indicated good SBAS performance and exceed monthly average of the availability map, three geomagnetic storms reduced the system performance below monthly average while one does not have effect on SBAS system performance in respect to monthly average. The present study indicates ROTI as a better proxy than geomagnetic indices for the assessment of storm-time effects on GNSS-SBAS performance.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aarons, J.: The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storm. Radio Sci. 26(4), 1131–1149 (1991)

    ADS  Article  Google Scholar 

  2. Abdu, M.A.: Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Terr. Phys. 63, 869–884 (2001)

    ADS  Article  Google Scholar 

  3. Abdu, M.A.: Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J. Atmos. Sol.-Terr. Phys. 75–76, 44–68 (2012). doi:10.1016/j.jastp.2011.04.024

    Article  Google Scholar 

  4. Abdu, M.A., Iyer, K.N., de Medeiros, R.T., Bastita, I.S., Sobral, J.H.A.: Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophys. Res. Lett. 33, L07106 (2006). doi:10.1029/2005GL024835

    ADS  Google Scholar 

  5. Abe, O.E., Otero Villamide, X., Paparini, C., Ngaya, H.R., Radicella, S.M., Nava, B.: Signature of ionospheric irregularities under different geophysical conditions on SBAS system performance in the west low-latitude region. Ann. Geophys. 35, 1–9 (2017a)

    ADS  Article  Google Scholar 

  6. Abe, O.E., Otero Villamide, X., Paparini, C., Radicella, S.M., Nava, B.: Analysis of a grid ionospheric vertical delay and its bounding errors over West African sub-Saharan region. J. Atmos. Sol.-Terr. Phys. 154, 67–74 (2017b)

    ADS  Article  Google Scholar 

  7. Araujo-Pradere, E.A., Fuller-Rowell, T.J.: Storm: an empirical storm-time ionospheric correction model, 2 validation. Radio Sci. 37(5), 1071 (2002)

    ADS  Google Scholar 

  8. Basu, S., Basu, Su., MacKenzie, E., Bridgwood, C., Valladares, C.E., Groves, K.M., Carrano, C.: Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle. Radio Sci. 45, RS5009 (2010). doi:10.1029/2009RS004343

    ADS  Article  Google Scholar 

  9. Basu, S., Grove, K.M., Quinn, J.M., Doherty, P.: A comparison of TEC fluctuation and scintillation at ascension island. J. Atmos. Sol.-Terr. Phys. 61, 1219–1226 (1999). www.sciencedirect.com/science/article/pii/S1364682699000528

    ADS  Article  Google Scholar 

  10. Biktash, L.Z.: Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms. Ann. Geophys. 22, 3195 (2004)

    ADS  Article  Google Scholar 

  11. Blanc, M., Richmond, A.D.: The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669–1686 (1980)

    ADS  Article  Google Scholar 

  12. Carrano, C.S., Valladares, C.E., Groves, K.M.: Latitudinal and local time variation of ionospheric turbulence parameters during the conjugate point equatorial experience in Brazil. Int. J. Geophys. 2012, 1–16 (2012). doi:10.1155/2012/103963

    Article  Google Scholar 

  13. Cezón, A., Cueto, M., Ramírez, E., Ostorlaza, J., Izquierdo, V., Pérez, D., Sardón, E.: SBAS performance Analysis in Equatorial Regions. ION-GNSS 2014

  14. Chandra, K.R., Strinivas, V.S., Sarma, A.D.: Investigation of ionospheric gradients for GAGAN application. Earth Planets Space 61, 633–635 (2009). www.terrapub.co.jp/journals/EPS/pdf/2009/6105/61050633.pdf

    ADS  Article  Google Scholar 

  15. Danilov, A.D., Lastoviçka, J.: Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2, 209–224 (2001)

    Google Scholar 

  16. Fesen, C.G., Crowley, G., Roble, R.G.: Ionospheric effects at low latitude during March 22, 1979 geomagnetic storm. J. Geophys. Res. 94, 5405–5417 (1989)

    ADS  Article  Google Scholar 

  17. Garner, T.W., Crowley, G., Wolf, R.A.: The impact of stormtime changes in the non-auroral conductance upon the low- and mid-latitude electric field. J. Atmos. Sol.-Terr. Phys. 69, 1200–1212 (2007)

    ADS  Article  Google Scholar 

  18. Hernandez-Pajares, M., Juan Zornoza, J.M., Sanz Subbirana, J., Farnworth, R., Soley, S.: EGNOS test bed ionospheric corrections under the October and November 2003 storms. IEEE Trans. Geosci. Remote Sens. 43(10) (2005)

  19. Ionospheric Studies Task Force (ISTF/1): Ionospheric effect on GNSS aviation operation issues—first meeting of Ionospheric Studies Task Force (ISTF/1) (available as NSP Flimsy14, WGW meeting in Tokyo, Japan 27–29 Feb. 2012), 4–21 (2012)

  20. Jaggi, R.K., Wolf, R.A.: Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 78(16), 2852–2866 (1973)

    ADS  Article  Google Scholar 

  21. Jain, A., Sunita Tiwari, S., Jain, S., Gwal, A.K.: TEC response during severe geomagnetic storms near the crest of equatorial ionization anomaly. Indian J. Radio Space Phys. 39, 11–24 (2010)

    Google Scholar 

  22. Jiyun, L., Pullen, S., Datta-Baruna, S., Enge, P.: Assessment of nominal ionosphere spatial decorrelation for LAAS. IEEE/ION PLANS, 506–514 (2006). Koasas.kaist.ac.kr/bitstream/10203/19779/1/059.pdf

  23. Kane, R.P.: Ionospheric foF2 anomalies during some intense geomagnetic storms. Ann. Geophys. 23, 2487–2499 (2005)

    ADS  Article  Google Scholar 

  24. Kelley, M.C., Makela, J.J., de la Beaujardiere, O.: Convective ionospheric storms: a major space weather problem. Space Weather (2006). doi:10.1029/2005SW000144

    Google Scholar 

  25. Manisilla, G.A.: Some ionospheric storm effects at equatorial and low latitudes. Adv. Space Res. 53, 1329–1336 (2014)

    ADS  Article  Google Scholar 

  26. Martinis, C.R., Mendillo, M.J., Aarons, J.: Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. J. Geophys. Res. 110, A07306 (2005). doi:10.1029/2003JA010362

    ADS  Article  Google Scholar 

  27. Oladipo, O.A., Schuler, T.: Equatorial ionospheric irregularities using GPS TEC derived index. Ann. Geophys. 56(5), A0565 (2013). doi:10.4401/ag-6247

    Google Scholar 

  28. Paparini, C., Ngaya, H.R., Abe, O.E., Otero Villamide, X., Radicella, S.M., Nava, B.: SBAS navigation performance evaluation in Sub-Saharan Africa. Coordinates XI(11), 35–39 (2015). ISSN 0973-2136

    Google Scholar 

  29. Pi, X., Mannucci, A.J., Lindqdwister, U.J., Ho, C.M.: Monitoring of global ionospheric irregularities using the worldwide GPS. Geophys. Res. Lett. 24(18), 2283–2286 (1997). doi:10.1029/97GL02273

    ADS  Article  Google Scholar 

  30. Richmond, A.D.: Ionospheric electrodynamics. In: Handbook of Atmospheric Electrodynamics, vol. 2, pp. 249–290. CRC Press, Boca Raton (1995)

    Google Scholar 

  31. Rishbeth, H.: The F-layer dynamo. Planet. Space Sci. 19, 263 (1971)

    ADS  Article  Google Scholar 

  32. Schunk, R.W., Sojka, J.J.: Ionosphere-thermosphere space weather issues. J. Atmos. Sol.-Terr. Phys. 58(58), 1527–1574 (1996)

    ADS  Article  Google Scholar 

  33. Sugiura, M., Chapman, S.: The morphology of geomagnetic storms with sudden commencement. Abh.-Akad. Wiss. Goettin., Math. Phys. Kl. 1(4) (1960)

  34. Sun, S.J., Ban, P.P., Chen, C., Xu, Z.W., Zhao, Z.W.: On the vertical drift of ionosphere F layer during disturbance time: result from ionosonde. J. Geophys. Res. 117, A01303 (2012)

    ADS  Article  Google Scholar 

  35. Tanna, H.J., Pathak, K.N.: Longitudinal dependent response of the GPS derived ionospheric ROTI to geomagnetic storms. Astrophys. Space Sci. (2014). doi:10.1007/s10509-014-1938-3

    Google Scholar 

  36. Valladares, C.E., Villalobos, J., Sheehan, R., Haga, M.P.: Latitudinal extension of low latitude scintillations measured with a network of GPS receivers. Ann. Geophys. 22, 3155–3175 (2004). doi:10.5194/angeo-22-3155-2004

    ADS  Article  Google Scholar 

  37. Walter, T., Hansen, A., Blanch, J., Enge, P., Mannucci, T., Pi, X., Sparks, L., Iijima, B., El-Arini, B., Lejeune, R., Hagen, M., Altshuler, E., Fries, R., Chu, A.: Robust detection of ionospheric irregularities. J. Inst. Navig. 48(2), 89–100 (2001)

    Article  Google Scholar 

  38. Whalen, J.A.: The linear dependences of GHz scintillation on electron density observed in the equatorial anomaly. Ann. Geophys. 27, 1755–1761 (2009). doi:10.5194/angeo-27-1755-2009

    ADS  Article  Google Scholar 

  39. Wolf, R.A., Spiro, R.W., Sazykin, S., Toffoleto, F.R.: How the Earth’s inner magnetosphere works: an evolution picture. J. Atmos. Sol.-Terr. Phys. 69, 288–302 (2007)

    ADS  Article  Google Scholar 

  40. Yamazaki, Y., Kosch, M.J.: The equatorial electrojet during geomagnetic storms and substorms. J. Geophys. Res. Space Phys. 120, 2276–2287 (2015). doi:10.1002/2014JA020773

    ADS  Article  Google Scholar 

  41. Zalesak, S.T., Ossakow, S.L., Chaturved, P.K.: Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. J. Geophys. Res. A1(87), 151–166 (1982)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This paper contains results obtained during the “training through research” activities of the TREGA Project financed by the European Union under the Contribution Agreement between The European Commission and the ICTP. The authors are grateful to the office of the surveyor general of the Federal Government of Nigeria network (www.nignet.net), the administrator of IGS (https://igscb.jpl.nasa.gov), AFREF (www.afrefdata.org) and SONEL (www.sonel.org) networks for preserving the GNSS data and make it publicly available for scientific community. We also thank the Editor, Associate Editor and all the anonymous reviewers for their objective assessment of the paper and their valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. E. Abe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abe, O.E., Paparini, C., Ngaya, R.H. et al. The storm-time assessment of GNSS-SBAS performance within low latitude African region using a testbed-like platform. Astrophys Space Sci 362, 170 (2017). https://doi.org/10.1007/s10509-017-3150-8

Download citation

Keywords

  • GNSS
  • SBAS
  • Equatorial ionosphere
  • ROTI
  • Geomagnetic indices