Skip to main content
Log in

The storm-time assessment of GNSS-SBAS performance within low latitude African region using a testbed-like platform

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A Satellite Based Augmentation System (SBAS) is designed to improve Global Navigation Satellite Systems (GNSS) in terms of integrity, accuracy, availability and continuity. The main limitation to SBAS performance optimization is the ionosphere, and this is more critical in low latitude. During geomagnetically disturbed periods the role of storm-time winds is important because they modify the atmospheric composition toward low latitudes. An index of ionospheric disturbance, the relative percentage of deviation of the vertical Total Electron Content (TEC) from the quiet level (DvTEC) at each station was evaluated to study positive and negative phases of the geomagnetic storms. The rate of change of TEC index (ROTI) over all the GNSS stations was estimated to evaluate equatorial ionospheric gradients and irregularities. From the study it is observed that the positive deviations are more frequent than negative ones. The availability map, which is the mean of the combine Vertical Protection Level (VPL) and Horizontal Protection Level (HPL) are used for the SBAS performance. The cases of moderate and minor storms studied during the months of July and October 2013 showed that the SBAS system performance during the disturbed periods depends on the local time in which the storm occurs, geographic longitude and other phenomena that need further study. During the storm-time conditions considered, three out of seven geomagnetic storms indicated good SBAS performance and exceed monthly average of the availability map, three geomagnetic storms reduced the system performance below monthly average while one does not have effect on SBAS system performance in respect to monthly average. The present study indicates ROTI as a better proxy than geomagnetic indices for the assessment of storm-time effects on GNSS-SBAS performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarons, J.: The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storm. Radio Sci. 26(4), 1131–1149 (1991)

    Article  ADS  Google Scholar 

  • Abdu, M.A.: Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Terr. Phys. 63, 869–884 (2001)

    Article  ADS  Google Scholar 

  • Abdu, M.A.: Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J. Atmos. Sol.-Terr. Phys. 75–76, 44–68 (2012). doi:10.1016/j.jastp.2011.04.024

    Article  Google Scholar 

  • Abdu, M.A., Iyer, K.N., de Medeiros, R.T., Bastita, I.S., Sobral, J.H.A.: Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophys. Res. Lett. 33, L07106 (2006). doi:10.1029/2005GL024835

    ADS  Google Scholar 

  • Abe, O.E., Otero Villamide, X., Paparini, C., Ngaya, H.R., Radicella, S.M., Nava, B.: Signature of ionospheric irregularities under different geophysical conditions on SBAS system performance in the west low-latitude region. Ann. Geophys. 35, 1–9 (2017a)

    Article  ADS  Google Scholar 

  • Abe, O.E., Otero Villamide, X., Paparini, C., Radicella, S.M., Nava, B.: Analysis of a grid ionospheric vertical delay and its bounding errors over West African sub-Saharan region. J. Atmos. Sol.-Terr. Phys. 154, 67–74 (2017b)

    Article  ADS  Google Scholar 

  • Araujo-Pradere, E.A., Fuller-Rowell, T.J.: Storm: an empirical storm-time ionospheric correction model, 2 validation. Radio Sci. 37(5), 1071 (2002)

    ADS  Google Scholar 

  • Basu, S., Basu, Su., MacKenzie, E., Bridgwood, C., Valladares, C.E., Groves, K.M., Carrano, C.: Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle. Radio Sci. 45, RS5009 (2010). doi:10.1029/2009RS004343

    Article  ADS  Google Scholar 

  • Basu, S., Grove, K.M., Quinn, J.M., Doherty, P.: A comparison of TEC fluctuation and scintillation at ascension island. J. Atmos. Sol.-Terr. Phys. 61, 1219–1226 (1999). www.sciencedirect.com/science/article/pii/S1364682699000528

    Article  ADS  Google Scholar 

  • Biktash, L.Z.: Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms. Ann. Geophys. 22, 3195 (2004)

    Article  ADS  Google Scholar 

  • Blanc, M., Richmond, A.D.: The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669–1686 (1980)

    Article  ADS  Google Scholar 

  • Carrano, C.S., Valladares, C.E., Groves, K.M.: Latitudinal and local time variation of ionospheric turbulence parameters during the conjugate point equatorial experience in Brazil. Int. J. Geophys. 2012, 1–16 (2012). doi:10.1155/2012/103963

    Article  Google Scholar 

  • Cezón, A., Cueto, M., Ramírez, E., Ostorlaza, J., Izquierdo, V., Pérez, D., Sardón, E.: SBAS performance Analysis in Equatorial Regions. ION-GNSS 2014

  • Chandra, K.R., Strinivas, V.S., Sarma, A.D.: Investigation of ionospheric gradients for GAGAN application. Earth Planets Space 61, 633–635 (2009). www.terrapub.co.jp/journals/EPS/pdf/2009/6105/61050633.pdf

    Article  ADS  Google Scholar 

  • Danilov, A.D., Lastoviçka, J.: Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2, 209–224 (2001)

    Google Scholar 

  • Fesen, C.G., Crowley, G., Roble, R.G.: Ionospheric effects at low latitude during March 22, 1979 geomagnetic storm. J. Geophys. Res. 94, 5405–5417 (1989)

    Article  ADS  Google Scholar 

  • Garner, T.W., Crowley, G., Wolf, R.A.: The impact of stormtime changes in the non-auroral conductance upon the low- and mid-latitude electric field. J. Atmos. Sol.-Terr. Phys. 69, 1200–1212 (2007)

    Article  ADS  Google Scholar 

  • Hernandez-Pajares, M., Juan Zornoza, J.M., Sanz Subbirana, J., Farnworth, R., Soley, S.: EGNOS test bed ionospheric corrections under the October and November 2003 storms. IEEE Trans. Geosci. Remote Sens. 43(10) (2005)

  • Ionospheric Studies Task Force (ISTF/1): Ionospheric effect on GNSS aviation operation issues—first meeting of Ionospheric Studies Task Force (ISTF/1) (available as NSP Flimsy14, WGW meeting in Tokyo, Japan 27–29 Feb. 2012), 4–21 (2012)

  • Jaggi, R.K., Wolf, R.A.: Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 78(16), 2852–2866 (1973)

    Article  ADS  Google Scholar 

  • Jain, A., Sunita Tiwari, S., Jain, S., Gwal, A.K.: TEC response during severe geomagnetic storms near the crest of equatorial ionization anomaly. Indian J. Radio Space Phys. 39, 11–24 (2010)

    Google Scholar 

  • Jiyun, L., Pullen, S., Datta-Baruna, S., Enge, P.: Assessment of nominal ionosphere spatial decorrelation for LAAS. IEEE/ION PLANS, 506–514 (2006). Koasas.kaist.ac.kr/bitstream/10203/19779/1/059.pdf

  • Kane, R.P.: Ionospheric foF2 anomalies during some intense geomagnetic storms. Ann. Geophys. 23, 2487–2499 (2005)

    Article  ADS  Google Scholar 

  • Kelley, M.C., Makela, J.J., de la Beaujardiere, O.: Convective ionospheric storms: a major space weather problem. Space Weather (2006). doi:10.1029/2005SW000144

    Google Scholar 

  • Manisilla, G.A.: Some ionospheric storm effects at equatorial and low latitudes. Adv. Space Res. 53, 1329–1336 (2014)

    Article  ADS  Google Scholar 

  • Martinis, C.R., Mendillo, M.J., Aarons, J.: Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. J. Geophys. Res. 110, A07306 (2005). doi:10.1029/2003JA010362

    Article  ADS  Google Scholar 

  • Oladipo, O.A., Schuler, T.: Equatorial ionospheric irregularities using GPS TEC derived index. Ann. Geophys. 56(5), A0565 (2013). doi:10.4401/ag-6247

    Google Scholar 

  • Paparini, C., Ngaya, H.R., Abe, O.E., Otero Villamide, X., Radicella, S.M., Nava, B.: SBAS navigation performance evaluation in Sub-Saharan Africa. Coordinates XI(11), 35–39 (2015). ISSN 0973-2136

    Google Scholar 

  • Pi, X., Mannucci, A.J., Lindqdwister, U.J., Ho, C.M.: Monitoring of global ionospheric irregularities using the worldwide GPS. Geophys. Res. Lett. 24(18), 2283–2286 (1997). doi:10.1029/97GL02273

    Article  ADS  Google Scholar 

  • Richmond, A.D.: Ionospheric electrodynamics. In: Handbook of Atmospheric Electrodynamics, vol. 2, pp. 249–290. CRC Press, Boca Raton (1995)

    Google Scholar 

  • Rishbeth, H.: The F-layer dynamo. Planet. Space Sci. 19, 263 (1971)

    Article  ADS  Google Scholar 

  • Schunk, R.W., Sojka, J.J.: Ionosphere-thermosphere space weather issues. J. Atmos. Sol.-Terr. Phys. 58(58), 1527–1574 (1996)

    Article  ADS  Google Scholar 

  • Sugiura, M., Chapman, S.: The morphology of geomagnetic storms with sudden commencement. Abh.-Akad. Wiss. Goettin., Math. Phys. Kl. 1(4) (1960)

  • Sun, S.J., Ban, P.P., Chen, C., Xu, Z.W., Zhao, Z.W.: On the vertical drift of ionosphere F layer during disturbance time: result from ionosonde. J. Geophys. Res. 117, A01303 (2012)

    Article  ADS  Google Scholar 

  • Tanna, H.J., Pathak, K.N.: Longitudinal dependent response of the GPS derived ionospheric ROTI to geomagnetic storms. Astrophys. Space Sci. (2014). doi:10.1007/s10509-014-1938-3

    Google Scholar 

  • Valladares, C.E., Villalobos, J., Sheehan, R., Haga, M.P.: Latitudinal extension of low latitude scintillations measured with a network of GPS receivers. Ann. Geophys. 22, 3155–3175 (2004). doi:10.5194/angeo-22-3155-2004

    Article  ADS  Google Scholar 

  • Walter, T., Hansen, A., Blanch, J., Enge, P., Mannucci, T., Pi, X., Sparks, L., Iijima, B., El-Arini, B., Lejeune, R., Hagen, M., Altshuler, E., Fries, R., Chu, A.: Robust detection of ionospheric irregularities. J. Inst. Navig. 48(2), 89–100 (2001)

    Article  Google Scholar 

  • Whalen, J.A.: The linear dependences of GHz scintillation on electron density observed in the equatorial anomaly. Ann. Geophys. 27, 1755–1761 (2009). doi:10.5194/angeo-27-1755-2009

    Article  ADS  Google Scholar 

  • Wolf, R.A., Spiro, R.W., Sazykin, S., Toffoleto, F.R.: How the Earth’s inner magnetosphere works: an evolution picture. J. Atmos. Sol.-Terr. Phys. 69, 288–302 (2007)

    Article  ADS  Google Scholar 

  • Yamazaki, Y., Kosch, M.J.: The equatorial electrojet during geomagnetic storms and substorms. J. Geophys. Res. Space Phys. 120, 2276–2287 (2015). doi:10.1002/2014JA020773

    Article  ADS  Google Scholar 

  • Zalesak, S.T., Ossakow, S.L., Chaturved, P.K.: Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. J. Geophys. Res. A1(87), 151–166 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper contains results obtained during the “training through research” activities of the TREGA Project financed by the European Union under the Contribution Agreement between The European Commission and the ICTP. The authors are grateful to the office of the surveyor general of the Federal Government of Nigeria network (www.nignet.net), the administrator of IGS (https://igscb.jpl.nasa.gov), AFREF (www.afrefdata.org) and SONEL (www.sonel.org) networks for preserving the GNSS data and make it publicly available for scientific community. We also thank the Editor, Associate Editor and all the anonymous reviewers for their objective assessment of the paper and their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Abe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abe, O.E., Paparini, C., Ngaya, R.H. et al. The storm-time assessment of GNSS-SBAS performance within low latitude African region using a testbed-like platform. Astrophys Space Sci 362, 170 (2017). https://doi.org/10.1007/s10509-017-3150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3150-8

Keywords

Navigation