Astrophysics and Space Science

, 362:170 | Cite as

The storm-time assessment of GNSS-SBAS performance within low latitude African region using a testbed-like platform

  • O. E. AbeEmail author
  • C. Paparini
  • R. H. Ngaya
  • X. Otero Villamide
  • S. M. Radicella
  • B. Nava
Original Article


A Satellite Based Augmentation System (SBAS) is designed to improve Global Navigation Satellite Systems (GNSS) in terms of integrity, accuracy, availability and continuity. The main limitation to SBAS performance optimization is the ionosphere, and this is more critical in low latitude. During geomagnetically disturbed periods the role of storm-time winds is important because they modify the atmospheric composition toward low latitudes. An index of ionospheric disturbance, the relative percentage of deviation of the vertical Total Electron Content (TEC) from the quiet level (DvTEC) at each station was evaluated to study positive and negative phases of the geomagnetic storms. The rate of change of TEC index (ROTI) over all the GNSS stations was estimated to evaluate equatorial ionospheric gradients and irregularities. From the study it is observed that the positive deviations are more frequent than negative ones. The availability map, which is the mean of the combine Vertical Protection Level (VPL) and Horizontal Protection Level (HPL) are used for the SBAS performance. The cases of moderate and minor storms studied during the months of July and October 2013 showed that the SBAS system performance during the disturbed periods depends on the local time in which the storm occurs, geographic longitude and other phenomena that need further study. During the storm-time conditions considered, three out of seven geomagnetic storms indicated good SBAS performance and exceed monthly average of the availability map, three geomagnetic storms reduced the system performance below monthly average while one does not have effect on SBAS system performance in respect to monthly average. The present study indicates ROTI as a better proxy than geomagnetic indices for the assessment of storm-time effects on GNSS-SBAS performance.


GNSS SBAS Equatorial ionosphere ROTI Geomagnetic indices 



This paper contains results obtained during the “training through research” activities of the TREGA Project financed by the European Union under the Contribution Agreement between The European Commission and the ICTP. The authors are grateful to the office of the surveyor general of the Federal Government of Nigeria network (, the administrator of IGS (, AFREF ( and SONEL ( networks for preserving the GNSS data and make it publicly available for scientific community. We also thank the Editor, Associate Editor and all the anonymous reviewers for their objective assessment of the paper and their valuable suggestions.


  1. Aarons, J.: The role of the ring current in the generation or inhibition of equatorial F layer irregularities during magnetic storm. Radio Sci. 26(4), 1131–1149 (1991) ADSCrossRefGoogle Scholar
  2. Abdu, M.A.: Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Terr. Phys. 63, 869–884 (2001) ADSCrossRefGoogle Scholar
  3. Abdu, M.A.: Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. J. Atmos. Sol.-Terr. Phys. 75–76, 44–68 (2012). doi: 10.1016/j.jastp.2011.04.024 CrossRefGoogle Scholar
  4. Abdu, M.A., Iyer, K.N., de Medeiros, R.T., Bastita, I.S., Sobral, J.H.A.: Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field. Geophys. Res. Lett. 33, L07106 (2006). doi: 10.1029/2005GL024835 ADSGoogle Scholar
  5. Abe, O.E., Otero Villamide, X., Paparini, C., Ngaya, H.R., Radicella, S.M., Nava, B.: Signature of ionospheric irregularities under different geophysical conditions on SBAS system performance in the west low-latitude region. Ann. Geophys. 35, 1–9 (2017a) ADSCrossRefGoogle Scholar
  6. Abe, O.E., Otero Villamide, X., Paparini, C., Radicella, S.M., Nava, B.: Analysis of a grid ionospheric vertical delay and its bounding errors over West African sub-Saharan region. J. Atmos. Sol.-Terr. Phys. 154, 67–74 (2017b) ADSCrossRefGoogle Scholar
  7. Araujo-Pradere, E.A., Fuller-Rowell, T.J.: Storm: an empirical storm-time ionospheric correction model, 2 validation. Radio Sci. 37(5), 1071 (2002) ADSGoogle Scholar
  8. Basu, S., Basu, Su., MacKenzie, E., Bridgwood, C., Valladares, C.E., Groves, K.M., Carrano, C.: Specification of the occurrence of equatorial ionospheric scintillations during the main phase of large magnetic storms within solar cycle. Radio Sci. 45, RS5009 (2010). doi: 10.1029/2009RS004343 ADSCrossRefGoogle Scholar
  9. Basu, S., Grove, K.M., Quinn, J.M., Doherty, P.: A comparison of TEC fluctuation and scintillation at ascension island. J. Atmos. Sol.-Terr. Phys. 61, 1219–1226 (1999). ADSCrossRefGoogle Scholar
  10. Biktash, L.Z.: Role of the magnetospheric and ionospheric currents in the generation of the equatorial scintillations during geomagnetic storms. Ann. Geophys. 22, 3195 (2004) ADSCrossRefGoogle Scholar
  11. Blanc, M., Richmond, A.D.: The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669–1686 (1980) ADSCrossRefGoogle Scholar
  12. Carrano, C.S., Valladares, C.E., Groves, K.M.: Latitudinal and local time variation of ionospheric turbulence parameters during the conjugate point equatorial experience in Brazil. Int. J. Geophys. 2012, 1–16 (2012). doi: 10.1155/2012/103963 CrossRefGoogle Scholar
  13. Cezón, A., Cueto, M., Ramírez, E., Ostorlaza, J., Izquierdo, V., Pérez, D., Sardón, E.: SBAS performance Analysis in Equatorial Regions. ION-GNSS 2014 Google Scholar
  14. Chandra, K.R., Strinivas, V.S., Sarma, A.D.: Investigation of ionospheric gradients for GAGAN application. Earth Planets Space 61, 633–635 (2009). ADSCrossRefGoogle Scholar
  15. Danilov, A.D., Lastoviçka, J.: Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2, 209–224 (2001) Google Scholar
  16. Fesen, C.G., Crowley, G., Roble, R.G.: Ionospheric effects at low latitude during March 22, 1979 geomagnetic storm. J. Geophys. Res. 94, 5405–5417 (1989) ADSCrossRefGoogle Scholar
  17. Garner, T.W., Crowley, G., Wolf, R.A.: The impact of stormtime changes in the non-auroral conductance upon the low- and mid-latitude electric field. J. Atmos. Sol.-Terr. Phys. 69, 1200–1212 (2007) ADSCrossRefGoogle Scholar
  18. Hernandez-Pajares, M., Juan Zornoza, J.M., Sanz Subbirana, J., Farnworth, R., Soley, S.: EGNOS test bed ionospheric corrections under the October and November 2003 storms. IEEE Trans. Geosci. Remote Sens. 43(10) (2005) Google Scholar
  19. Ionospheric Studies Task Force (ISTF/1): Ionospheric effect on GNSS aviation operation issues—first meeting of Ionospheric Studies Task Force (ISTF/1) (available as NSP Flimsy14, WGW meeting in Tokyo, Japan 27–29 Feb. 2012), 4–21 (2012) Google Scholar
  20. Jaggi, R.K., Wolf, R.A.: Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 78(16), 2852–2866 (1973) ADSCrossRefGoogle Scholar
  21. Jain, A., Sunita Tiwari, S., Jain, S., Gwal, A.K.: TEC response during severe geomagnetic storms near the crest of equatorial ionization anomaly. Indian J. Radio Space Phys. 39, 11–24 (2010) Google Scholar
  22. Jiyun, L., Pullen, S., Datta-Baruna, S., Enge, P.: Assessment of nominal ionosphere spatial decorrelation for LAAS. IEEE/ION PLANS, 506–514 (2006).
  23. Kane, R.P.: Ionospheric foF2 anomalies during some intense geomagnetic storms. Ann. Geophys. 23, 2487–2499 (2005) ADSCrossRefGoogle Scholar
  24. Kelley, M.C., Makela, J.J., de la Beaujardiere, O.: Convective ionospheric storms: a major space weather problem. Space Weather (2006). doi: 10.1029/2005SW000144 Google Scholar
  25. Manisilla, G.A.: Some ionospheric storm effects at equatorial and low latitudes. Adv. Space Res. 53, 1329–1336 (2014) ADSCrossRefGoogle Scholar
  26. Martinis, C.R., Mendillo, M.J., Aarons, J.: Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms. J. Geophys. Res. 110, A07306 (2005). doi: 10.1029/2003JA010362 ADSCrossRefGoogle Scholar
  27. Oladipo, O.A., Schuler, T.: Equatorial ionospheric irregularities using GPS TEC derived index. Ann. Geophys. 56(5), A0565 (2013). doi: 10.4401/ag-6247 Google Scholar
  28. Paparini, C., Ngaya, H.R., Abe, O.E., Otero Villamide, X., Radicella, S.M., Nava, B.: SBAS navigation performance evaluation in Sub-Saharan Africa. Coordinates XI(11), 35–39 (2015). ISSN 0973-2136 Google Scholar
  29. Pi, X., Mannucci, A.J., Lindqdwister, U.J., Ho, C.M.: Monitoring of global ionospheric irregularities using the worldwide GPS. Geophys. Res. Lett. 24(18), 2283–2286 (1997). doi: 10.1029/97GL02273 ADSCrossRefGoogle Scholar
  30. Richmond, A.D.: Ionospheric electrodynamics. In: Handbook of Atmospheric Electrodynamics, vol. 2, pp. 249–290. CRC Press, Boca Raton (1995) Google Scholar
  31. Rishbeth, H.: The F-layer dynamo. Planet. Space Sci. 19, 263 (1971) ADSCrossRefGoogle Scholar
  32. Schunk, R.W., Sojka, J.J.: Ionosphere-thermosphere space weather issues. J. Atmos. Sol.-Terr. Phys. 58(58), 1527–1574 (1996) ADSCrossRefGoogle Scholar
  33. Sugiura, M., Chapman, S.: The morphology of geomagnetic storms with sudden commencement. Abh.-Akad. Wiss. Goettin., Math. Phys. Kl. 1(4) (1960) Google Scholar
  34. Sun, S.J., Ban, P.P., Chen, C., Xu, Z.W., Zhao, Z.W.: On the vertical drift of ionosphere F layer during disturbance time: result from ionosonde. J. Geophys. Res. 117, A01303 (2012) ADSCrossRefGoogle Scholar
  35. Tanna, H.J., Pathak, K.N.: Longitudinal dependent response of the GPS derived ionospheric ROTI to geomagnetic storms. Astrophys. Space Sci. (2014). doi: 10.1007/s10509-014-1938-3 Google Scholar
  36. Valladares, C.E., Villalobos, J., Sheehan, R., Haga, M.P.: Latitudinal extension of low latitude scintillations measured with a network of GPS receivers. Ann. Geophys. 22, 3155–3175 (2004). doi: 10.5194/angeo-22-3155-2004 ADSCrossRefGoogle Scholar
  37. Walter, T., Hansen, A., Blanch, J., Enge, P., Mannucci, T., Pi, X., Sparks, L., Iijima, B., El-Arini, B., Lejeune, R., Hagen, M., Altshuler, E., Fries, R., Chu, A.: Robust detection of ionospheric irregularities. J. Inst. Navig. 48(2), 89–100 (2001) CrossRefGoogle Scholar
  38. Whalen, J.A.: The linear dependences of GHz scintillation on electron density observed in the equatorial anomaly. Ann. Geophys. 27, 1755–1761 (2009). doi: 10.5194/angeo-27-1755-2009 ADSCrossRefGoogle Scholar
  39. Wolf, R.A., Spiro, R.W., Sazykin, S., Toffoleto, F.R.: How the Earth’s inner magnetosphere works: an evolution picture. J. Atmos. Sol.-Terr. Phys. 69, 288–302 (2007) ADSCrossRefGoogle Scholar
  40. Yamazaki, Y., Kosch, M.J.: The equatorial electrojet during geomagnetic storms and substorms. J. Geophys. Res. Space Phys. 120, 2276–2287 (2015). doi: 10.1002/2014JA020773 ADSCrossRefGoogle Scholar
  41. Zalesak, S.T., Ossakow, S.L., Chaturved, P.K.: Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. J. Geophys. Res. A1(87), 151–166 (1982) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • O. E. Abe
    • 1
    • 2
    Email author
  • C. Paparini
    • 1
  • R. H. Ngaya
    • 1
  • X. Otero Villamide
    • 1
  • S. M. Radicella
    • 1
  • B. Nava
    • 1
  1. 1.T/ICT4Dthe Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Department of PhysicsFederal University Oye-EkitiOye-EkitiNigeria

Personalised recommendations