Skip to main content
Log in

Evolution of the regions of the 3\(D\) particle motion in the regular polygon problem of (\(N+1\)) bodies with a quasi-homogeneous potential

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The regular polygon problem of (\(N+1\)) bodies deals with the dynamics of a small body, natural or artificial, in the force field of \(N\) big bodies, the \(\nu=N-1\) of which have equal masses and form an imaginary regular \(\nu \)-gon, while the \(N\)th body with a different mass is located at the center of mass of the system. In this work, instead of considering Newtonian potentials and forces, we assume that the big bodies create quasi-homogeneous potentials, in the sense that we insert to the inverse square Newtonian law of gravitation an inverse cube corrective term, aiming to approximate various phenomena due to their shape or to the radiation emitting from the primaries. Based on this new consideration, we apply a general methodology in order to investigate by means of the zero-velocity surfaces, the regions where 3\(D\) motions of the small body are allowed, their evolutions and parametric variations, their topological bifurcations, as well as the existing trapping domains of the particle. Here we note that this process is definitely a fundamental step of great importance in the study of many dynamical systems characterized by a Jacobian-type integral of motion in the long way of searching for solutions of any kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Arribas, M., Elipe, A.: Bifurcations and equilibria in the extended \(N\)-body problem. Mech. Res. Commun. 31, 1–8 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Arribas, M., Elipe, A., Kalvouridis, T.J.: Central configuration in the planar \((n+1)\) body problem with generalized forces. Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza 28, 1–8 (2006)

    MathSciNet  MATH  Google Scholar 

  • Arribas, M., Elipe, A., Kalvouridis, T.J., Palacios, M.: Homographic solutions in the planar \((n+1)\) problem in a quasi-homogeneous potential. Celest. Mech. Dyn. Astron. 99(1), 1–12 (2007)

    Article  ADS  MATH  Google Scholar 

  • Arribas, M., Elipe, A., Palacios, M.: Linear stability of ring systems with generalized central forces. Astron. Astrophys. 489(2), 819–824 (2008)

    Article  ADS  Google Scholar 

  • Arribas, M., Elipe, A., Palacios, M.: Linear stability in an extended ring system. In: De Leon, M., de Diego, D.M., Ros, R.M. (eds.) AIP, Proc. of the International Conference “CP1283, Mathematics and Astronomy: A Joint Long Journey”, pp. 128–136 (2010)

    Google Scholar 

  • Croustalloudi, M.N.: Particle dynamics in the Newtonian field of a regular polygon dynamical system of \(\nu+1\) bodies. PhD Thesis, National Technical University of Athens, pp. 1–223 (2006)

  • Croustalloudi, M.N., Kalvouridis, T.J.: Attracting domains in ring-type \(N\)-body formations. Planet. Space Sci. 55, 53–69 (2007)

    Article  ADS  Google Scholar 

  • Croustalloudi, M.N., Kalvouridis, T.J.: Regions of a satellite’s motion in a Maxwell’s ring system of \(N\) bodies. Astrophys. Space Sci. 331(2), 497–510 (2011)

    Article  ADS  MATH  Google Scholar 

  • Diacu, F.N.: Near-collision dynamics for particle systems with quasi-homogeneous potentials. J. Differ. Equ. 128, 58–77 (1996)

    Article  ADS  MATH  Google Scholar 

  • Elipe, A., Arribas, M., Kalvouridis, T.J.: Periodic solutions in the planar \((N+1)\) ring problem with oblateness. J. Guid. Control Dyn. 30(6), 1640–1648 (2007)

    Article  ADS  Google Scholar 

  • Fakis, D.Gn.: Numerical investigation of the dynamics of a small body in a Maxwell-type ring-type \(N\)-body system where the central body creates a Manev-type post-Newtonian potential field. PhD Thesis, National Technical University of Athens, Greece (2014)

  • Fakis, D.Gn., Kalvouridis, T.J.: Dynamics of a small body in a Maxwell ring-type \(N\)-body system with a spheroid central body. Celest. Mech. Dyn. Astron. 116(3), 229–240 (2013)

    Article  ADS  Google Scholar 

  • Fakis, D.Gn., Kalvouridis, T.J.: On a property of the zero-velocity curves in the regular polygon problem of \(N+1\) bodies with a quasi-homogeneous potential. Rom. Astron. J. 24(1), 7–26 (2014)

    Google Scholar 

  • Fakis, D.Gn., Kalvouridis, T.J.: The Copenhagen problem with a quasi-homogeneous potential. Astrophys. Space Sci. 266(362), 102 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Goudas, C.L., Leftaki, M., Petsagourakis, E.G.: Motions in the field of two rotating magnetic dipoles. III. Zero-velocity curves and surfaces. Celest. Mech. Dyn. Astron. 47, 1–14 (1988)

    Article  ADS  MATH  Google Scholar 

  • Hadjifotinou, K.G., Kalvouridis, T.J.: Numerical investigation of periodic motion in the three-dimensional ring problem of \(N\) bodies. Int. J. Bifurc. Chaos 15(8), 2681–2688 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: A planar case of the \(N+1\) body problem. The ‘ring’ problem. Astrophys. Space Sci. 260(3), 309–325 (1999a)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J.: Periodic solutions in the ring problem. Astrophys. Space Sci. 266(4), 467–494 (1999b)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J.: Zero-velocity surfaces in the three-dimensional ring problem of \(N+1\) bodies. Celest. Mech. Dyn. Astron. 80, 135–146 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: Particle motions in Maxwell’s ring dynamical systems. Celest. Mech. Dyn. Astron. 102(1–3), 191–206 (2008a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: On the topology of the regions of 3-D particle motions in annular configurations of \(N\) bodies with a central post-Newtonian potential. In: Contopoulos, G., Patsis, P.A. (eds.) “Chaos in Astronomy” Astrophys. Space Sci. Proceedings, pp. 357–362. (2008b).

    Google Scholar 

  • Kalvouridis, T.J.: Charged particles’ areas of three-dimensional motions in a system of two magnetic stars. Astrophys. Space Sci. 319(2–4), 105–114 (2009a)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J.: Bifurcations in the topology of zero-velocity surfaces in the photo-gravitational Copenhagen problem. Int. J. Bifurc. Chaos 19(3), 1097–1111 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J., Hadjifotinou, K.G.: Bifurcations from planar to three-dimensional periodic orbits in the photo-gravitational restricted four-body problem. Int. J. Bifurc. Chaos 18(2), 465–479 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J., Hadjifotinou, K.G.: Bifurcations from planar to three-dimensional periodic orbits in the ring problem of \(N\) bodies with a radiating central primary. Int. J. Bifurc. Chaos 21(8), 2245–2260 (2011)

    Article  MATH  Google Scholar 

  • Lundberg, J., Szebehely, V., Nerem, R.S., Beal, B.: Surfaces of zero-velocity in the restricted problem of three bodies. Celest. Mech. Dyn. Astron. 36, 191–205 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Maneff, G.: La gravitation et le principe de l’action et de la réaction. C. R. Acad. Sci. Paris 178, 2159–2161 (1924)

    MATH  Google Scholar 

  • Maneff, G.: Die gravitation und das prinzip von wirkung und gegenwirkung. Z. Phys. 31, 786–802 (1925)

    Article  ADS  MATH  Google Scholar 

  • Maneff, G.: Le principe de la moindre action et la gravitation. C. R. Acad. Sci. Paris 190, 963–965 (1930a)

    MATH  Google Scholar 

  • Maneff, G.: La gravitation et l’ énergie au zéro. C. R. Acad. Sci. Paris 190, 1374–1377 (1930b)

    MATH  Google Scholar 

  • Marañhao, D., Llibre, J.: Ejection-collision orbits and invariant punctured tori in a restricted four-body problem. Celest. Mech. Dyn. Astron. 71, 1–14 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maxwell, J.C.: On the Stability of the Motion of Saturn’s Rings. Scientific Papers of James Clerk Maxwell, vol. 1, p. 228. Cambridge University Press, Cambridge (1890)

    Google Scholar 

  • Ollöngren, A.: On a particular restricted five-body problem, an analysis with computer algebra. J. Symb. Comput. 6, 117–126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: On symmetric central configurations with application to satellite motion about rings. PhD Thesis, The University of Michigan (1992)

  • Scheeres, D.J., Vinh, N.X.: The restricted \(P+2\) body problem. Acta Astronaut. 29(4), 237–248 (1993)

    Article  ADS  Google Scholar 

  • Valaris, E.P., Papadakis, K.E.: Instability in the 3rd dimension of the extended Störmer problem. Earth Moon Planets 84, 63–79 (2000)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilemahos Kalvouridis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakis, D., Kalvouridis, T. Evolution of the regions of the 3\(D\) particle motion in the regular polygon problem of (\(N+1\)) bodies with a quasi-homogeneous potential. Astrophys Space Sci 362, 174 (2017). https://doi.org/10.1007/s10509-017-3146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3146-4

Keywords

Navigation