Skip to main content
Log in

The Copenhagen problem with a quasi-homogeneous potential

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The Copenhagen problem is a well-known case of the famous restricted three-body problem. In this work instead of considering Newtonian potentials and forces we assume that the two primaries create a quasi-homogeneous potential, which means that we insert to the inverse square law of gravitation an inverse cube corrective term in order to approximate various phenomena as the radiation pressure of the primaries or the non-sphericity of them. Based on this new consideration we investigate the equilibrium locations of the small body and their parametric dependence, as well as the zero-velocity curves and surfaces for the planar motion, and the evolution of the regions where this motion is permitted when the Jacobian constant varies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arribas, M., Elipe, A.: Bifurcations and equilibria in the extended \(N\)-body problem. Mech. Res. Commun. 31, 1–8 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Arribas, M., Elipe, A., Palacios, M.: Linear stability in an extended ring system. In: De Leon, M., de Diego, D.M., Ros, R.M. (eds.) Proc. of the International Conference “CP1283, Mathematics and Astronomy: A Joint Long Journey”, pp. 128–136. AIP, New York (2010)

    Google Scholar 

  • Arribas, M., Abad, A., Elipe, A., Palacios, M.: Out-of-plane equilibria in the symmetric collinear restricted four-body problem with radiation pressure. Astrophys. Space Sci. 361, 260 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Barrio, R., Blesa, F., Serrano, S.: Is there chaos in Copenhagen problem? Monogr. Real Acad. Ci. Zaragoza 30, 43–50 (2006)

    MathSciNet  MATH  Google Scholar 

  • Barrio, R., Blesa, F., Serrano, S.: Periodic, escape and chaotic orbits in the Copenhagen and the (\(n+1\))-body ring problems. Commun. Nonlinear Sci. Numer. Simul. 14, 2229–2238 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Benet, L., Trautman, D., Seligman, T.: Chaotic scattering in the restricted three-body problem. I. The Copenhagen problem. Celest. Mech. Dyn. Astron. 66, 203–228 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Broucke, R.: Stable orbits of planets of a binary star system in the three-dimensional restricted problem. Celest. Mech. Dyn. Astron. 81, 321–341 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Croustalloudi, M.N., Kalvouridis, T.J.: Attracting domains in ring-type \(N\)-body formations. Planet. Space Sci. 55(1–2), 53–69 (2007)

    Article  ADS  Google Scholar 

  • Diacu, F.N.: Near-collision dynamics for particle systems with quasi-homogeneous potentials. J. Differ. Equ. 128, 58–77 (1996)

    Article  ADS  MATH  Google Scholar 

  • Elipe, A., Arribas, M., Kalvouridis, T.J.: Periodic solutions in the planar (\(N+1\)) ring problem with oblateness. J. Guid. Control Dyn. 30(6), 1640–1648 (2007)

    Article  ADS  Google Scholar 

  • Fakis, D.Gn., Kalvouridis, T.J.: Dynamics of a small body in a Maxwell ring-type \(N\)-body system with a spheroid central body. Celest. Mech. Dyn. Astron. 116(3), 229–240 (2013)

    Article  ADS  Google Scholar 

  • Fakis, D.Gn., Kalvouridis, T.J.: On a property of the zero-velocity curves in the regular polygon problem of \(N+1\) bodies with a quasi-homogeneous potential. Rom. Astron. J. 24(1), 7–26 (2014)

    Google Scholar 

  • Gousidou-Koutita, M., Kalvouridis, T.J.: On the efficiency of Newton and Broyden numerical methods in the investigation of the regular polygon problem of (\(N+1\)) bodies. Appl. Math. Comput. 212, 100–112 (2009)

    MathSciNet  MATH  Google Scholar 

  • Hadjifotinou, K.G., Kalvouridis, T.J.: Numerical investigation of periodic motion in the three-dimensional ring problem of \(N\) bodies. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(8), 2681–2688 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: A planar case of the \(n+1\) body problem. The ‘ring’ problem. Astrophys. Space Sci. 260(3), 309–325 (1999a)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J.: Periodic solutions in the ring problem. Astrophys. Space Sci. 266(4), 467–494 (1999b)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J.: Zero-velocity surfaces in the three-dimensional ring problem of (\(N+1\)) bodies. Celest. Mech. Dyn. Astron. 80, 135–146 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: On a new property of the zero-velocity curves in \(N\)-body ring-type systems. Planet. Space Sci. 52(10), 909–914 (2004)

    Article  ADS  Google Scholar 

  • Kalvouridis, T.J.: On a class of equilibria of a small rigid body in a Copenhagen configuration. Rom. Astron. J. 18(2), 167–179 (2008a)

    MathSciNet  Google Scholar 

  • Kalvouridis, T.J.: On some new aspects of the photo-gravitational Copenhagen problem. Astrophys. Space Sci. 317(1–2), 107–117 (2008b)

    Article  ADS  MATH  Google Scholar 

  • Kalvouridis, T.J.: Particle motions in Maxwell’s ring dynamical systems. Celest. Mech. Dyn. Astron. 102(1–3), 191–206 (2008c)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: Bifurcations in the topology of zero-velocity surfaces in the photo-gravitational Copenhagen problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 19(3), 1097–1111 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J.: Stationary solutions of a small gyrostat in the Newtonian field of two bodies with equal masses. Nonlinear Dyn. 61(3), 373–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kalvouridis, T.J., Gousidou-Coutita, M.: Basins of attraction in the Copenhagen problem where the primaries are magnetic dipoles. Appl. Math. 3, 541–548 (2012)

    Article  Google Scholar 

  • Koyre, A., Cohen, I.B.: Isaac’s Newton Philosophiae Naturalis Principia Mathematica, vol. 1. Harvard University Press, Cambridge (1972)

    Google Scholar 

  • Manev, G.: La gravitation et le principe de l’action et de la réaction. C.R. Acad. Sci. Paris 178, 2159–2161 (1924)

    MATH  Google Scholar 

  • Manev, G.: Die gravitation und das prinzip von wirkung und gegenwirkung. Z. Phys. 31, 786–802 (1925)

    Article  ADS  MATH  Google Scholar 

  • Manev, G.: Le principe de la moindre action et la gravitation. C.R. Acad. Sci. Paris 190, 963–965 (1930a)

    MATH  Google Scholar 

  • Manev, G.: La gravitation et l’énergie au zéro. C.R. Acad. Sci. Paris 190, 1374–1377 (1930b)

    MATH  Google Scholar 

  • Marañhao, D., Llibre, J.: Ejection-collision orbits and invariant punctured tori in a restricted four-body problem. Celest. Mech. Dyn. Astron. 71, 1–14 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Maxwell, J.C.: On the stability of the motion of Saturn’s rings. In: Scientific Papers of James Clerk Maxwell, vol. 1, p. 228. Cambridge University Press, Cambridge (1890)

    Google Scholar 

  • Nagler, J.: Crash test for the Copenhagen problem. Phys. Rev. E 69, 066218 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Ollöngren, A.: On a particular restricted five-body problem, an analysis with computer algebra. J. Symb. Comput. 6, 117–126 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  • Papadakis, K., Ragos, O., Lintzerinos, C.: Asymmetric periodic orbits in the photogravitational Copenhagen problem. J. Comput. Appl. Math. 227(1), 102–114 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Perdios, E.A.: Asymptotic orbits and terminations of families in the Copenhagen problem. Astrophys. Space Sci. 240, 141–152 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Perdios, E.A.: Asymptotic orbits and terminations of families in the Copenhagen problem. II. Astrophys. Space Sci. 254, 61–66 (1997)

    Article  ADS  MATH  Google Scholar 

  • Perdios, E.A., Kalantonis, V.S., Douskos, C.N.: Straight-line oscillations generating three-dimensional motions in the photo-gravitational restricted three-body problem. Astrophys. Space Sci. 314, 199–208 (2008)

    Article  ADS  MATH  Google Scholar 

  • Roy, A.E., Steves, B.A.: Some special restricted four-body problems. II. From Caledonian to Copenhagen. Planet. Space Sci. 46(11/12), 1475–1486 (1998)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: On symmetric central configurations with application to satellite motion about rings. PhD Thesis, The University of Michigan (1992)

  • Scheeres, D.J., Vinh, N.X.: The restricted \(P+2\) body problem. Acta Astronaut. 29(4), 237–248 (1993)

    Article  ADS  Google Scholar 

  • Szebehely, V.: Theory of Orbits. Academic Press, New York (1967)

    Google Scholar 

  • Zotos, E.: Crash test for the Copenhagen problem with oblateness. Celest. Mech. Dyn. Astron. 122, 75–99 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilemahos Kalvouridis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakis, D., Kalvouridis, T. The Copenhagen problem with a quasi-homogeneous potential. Astrophys Space Sci 362, 102 (2017). https://doi.org/10.1007/s10509-017-3077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3077-0

Keywords

Navigation