Skip to main content
Log in

Rieger-type periodicities on the Sun and the Earth during solar cycles 21 and 22

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Rieger-type periods of the magnetic sunspot area time series have been found in two atmospheric time-series variables: neutron monitor count rate and atmospheric electric potential gradient. The data considered comprises two solar cycles (21, 22) and spans from 1978 to 1990. The study reveals the existence of similar and correlated features in sunspot area as well as neutron counts and atmospheric electric potential gradient, favoring the possibility that the Sun’s activity affects the Earth’s atmosphere and weather at a time scale between 150–300 days. Moreover, five different Rieger-type periods in the sunspot area time series are found, four of which are detected in the neutron monitor count rate, and three in the atmospheric electric potential gradient. These values are consistent with the periods predicted for stationary solar Rossby waves existing inside the Sun. The possibility is discussed that instabilities on the solar magnetic field caused by solar Rossby waves in the Sun’s interior might indirectly be affecting the activity of the heliosphere and the Earth’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arlt, R., Weiss, N.: Solar activity in the past and the chaotic behaviour of the dynamo. Space Sci. Rev. 186(1–4), 525–533 (2014)

    ADS  Google Scholar 

  • Charbonneau, P.: Dynamo models of the solar cycle. Living Rev. Sol. Phys. 7, 3 (2010). http://www.livingreviews.org/lrsp-2010-3

    Article  ADS  Google Scholar 

  • Chowdhury, P., Jain, R., Awasthi, A.K.: Periodicities in the X-ray emission from the solar corona. Astrophys. J. 778(1), 28 (2013)

    Article  ADS  Google Scholar 

  • Chowdhury, P., Choudhary, D.P., Gosain, S., Moon, Y.-J.: Short-term periodicities in interplanetary, geomagnetic and solar phenomena during solar cycle 24. Astrophys. Space Sci. 356, 7 (2015)

    Article  ADS  Google Scholar 

  • Dimitropoulou, M., Moussas, X., Strintzi, D.: Enhanced Rieger-type periodicities’ detection in X-ray solar flares and statistical validation of Rossby waves’ existence. Mon. Not. R. Astron. Soc. 386, 2278 (2008)

    Article  ADS  Google Scholar 

  • Droege, W., Gibbs, K., Grunsfeld, J.M., et al.: A 153 day periodicity in the occurrence of solar flares producing energetic interplanetary electrons. Astrophys. J. 73, 279 (1990)

    Article  Google Scholar 

  • Gonzalez, A.L.C., Gonzalez, W.D., Dutra, S.L.G., Tsurutani, B.T.: Periodic variation in the geomagnetic activity: a study based on the Ap index. J. Geophys. Res. 98, 9215 (1993)

    Article  ADS  Google Scholar 

  • Gurgenashvili, E., Zaqarashvili, T.V., Kukhianidze, V., Oliver, R., Ballester, J.L., Ramishvili, G., Shergelashvili, B., Hanslmeier, A., Poedts, S.: Rieger-type periodicity during solar cycles 14–24: estimation of dynamo magnetic field strength in the solar interior. Astrophys. J. 826, 55 (2016)

    Article  ADS  Google Scholar 

  • Haigh, J.D.: The Sun and the Earth’s climate. Living Rev. Sol. Phys. 4, 2 (2007)

    Article  ADS  Google Scholar 

  • Harrison, R.G., Mãrcz, F.: Heliospheric timescale identified in surface atmospheric electricity. Geophys. Res. Lett. 34, L23816 (2007)

    Article  ADS  Google Scholar 

  • Harrison, R.G., Ambaum, M.H.P., Lockwood, M.: Cloud base height and cosmic rays. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 467, 2777 (2011)

    Article  ADS  Google Scholar 

  • Hathaway, D.H.: The solar cycle. Living Rev. Sol. Phys. 7, 1 (2010)

    Article  ADS  Google Scholar 

  • Hill, J.R.: Long term solar activity forecasting using high-resolution time spectral analysis. Nature 266, 151 (1977)

    Article  ADS  Google Scholar 

  • Kile, J.N., Cliver, E.W.: A search for the 154 day periodicity in the occurrence rate of solar flares using Ottawa 2.8 GHz burst data, 1955–1990. Astrophys. J. 370, 442 (1991)

    Article  ADS  Google Scholar 

  • Krivova, N.A., Solanki, S.K.: The 1.3-year and 156-day periodicities in sunspot data: wavelet analysis suggests a common origin. Astron. Astrophys. 394, 701 (2002)

    Article  ADS  Google Scholar 

  • Lean, J.L., Brueckner, G.E.: Intermediate-term solar periodicities—100–500 days. Astrophys. J. 337, 568 (1989)

    Article  ADS  Google Scholar 

  • Lockwood, M.: Solar influence on global and regional climates. Surv. Geophys. 33, 503 (2012)

    Article  ADS  Google Scholar 

  • Lomb, N.R.: Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 33, 503 (2012)

    Google Scholar 

  • Lopes, I., Silva, H.G.: Looking for granulation and periodicities imprints in the sunspot time series. Astrophys. J. 804, 120 (2015)

    Article  ADS  Google Scholar 

  • Lopes, I., Passos, D., Nagy, M., Petrovay, K.: Oscillator models of the solar cycle. Space Sci. Rev. 186, 535 (2014)

    ADS  Google Scholar 

  • Lucio, P.S.: Learning with solar activity influence on Portugal’s rainfall: a stochastic overview. Geophys. Res. Lett. 32, L23819 (2005)

    Article  ADS  Google Scholar 

  • Mareev, E.A., Volodin, E.M.: Variation of the global electric circuit and ionospheric potential in a general circulation model. Geophys. Res. Lett. 41, 9009 (2014)

    Article  ADS  Google Scholar 

  • Markson, R.: Modulation of the Earth’s electric field by cosmic radiation. Nature 291, 304 (1981)

    Article  ADS  Google Scholar 

  • Nicoll, K.A., Harrison, R.G.: Detection of lower tropospheric responses to solar energetic particles at midlatitudes. Phys. Rev. Lett. 112, 225001 (2014)

    Article  ADS  Google Scholar 

  • Owens, M.J., Scott, C.J., Lockwood, M., Barnard, L., Harrison, R.G., Nicoll, K., Watt, C., Bennett, A.J.: Modulation of UK lightning by heliospheric magnetic field polarity. Environ. Res. Lett. 9, 115009 (2014)

    Article  ADS  Google Scholar 

  • Papaloizou, J., Pringle, J.E.: Non-radial oscillations of rotating stars and their relevance to the short-period oscillations of cataclysmic variables. Mon. Not. R. Astron. Soc. 182, 423 (1978)

    Article  MATH  ADS  Google Scholar 

  • Potgieter, M.S.: Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10, 3 (2013)

    Article  ADS  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd edn. University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Provost, J., Berthomieu, G., Rocca, A.: Low frequency oscillations of a slowly rotating star—quasi toroidal modes. Astron. Astrophys. 94, 126 (1981)

    MATH  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.V.: The \({\sim }150\) day quasi-periodicity in interplanetary and solar phenomena during cycle 23. Geophys. Res. Lett. 32, L02104 (2005)

    Article  ADS  Google Scholar 

  • Rieger, E., Kanbach, G., Reppin, C., et al.: A 154-day periodicity in the occurrence of hard solar flares? Nature 312, 623 (1984)

    Article  ADS  Google Scholar 

  • Saio, H.: R-mode oscillations in uniformly rotating stars. Astrophys. J. 256, 717 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  • Scargle, J.D.: Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 263, 835 (1982)

    Article  ADS  Google Scholar 

  • Scott, C.J., Harrison, R.G., Owens, M.J., Lockwood, M., Barnard, L.: Evidence for solar wind modulation of lightning. Environ. Res. Lett. 9, 055004 (2014)

    Article  ADS  Google Scholar 

  • Serrano, C., Reis, A.H., Rosa, R., Lucio, P.S.: Influences of cosmic radiation, artificial radioactivity and aerosol concentration upon the fair-weather atmospheric electric field in Lisbon (1955–1991). Atmos. Res. 81, 236 (2006)

    Article  Google Scholar 

  • Shoelson, B.: (2003). www.mathworks.com/matlabcentral

  • Silva, H.G., Lopes, I.: Phase-space representation of neutron monitor count rate and atmospheric electric field in relation to solar activity in cycles 21 and 22. Earth Planets Space 68, 119 (2016)

    Article  ADS  Google Scholar 

  • Silva, H.G., Conceicao, R., Melgao, M., Nicoll, K., Mendes, P.B., Tlemcani, M., Rei, A.H., Harrison, R.G.: Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence. Environ. Res. Lett. 9, 114025 (2014)

    Article  ADS  Google Scholar 

  • Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 431, 1084 (2004)

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A., Haigh, J.D.: Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 51, 311 (2013)

    Article  ADS  Google Scholar 

  • Sturrock, P.A., Bertello, L.: Power spectrum analysis of Mount Wilson solar diameter measurements: evidence for solar internal R-mode oscillations. Astrophys. J. 725, 492 (2010)

    Article  ADS  Google Scholar 

  • Sturrock, P.A., Bush, R., Gough, D.O., Scargle, J.D.: Indications of R-mode oscillations in SOHO/MDI solar radius measurements. Astrophys. J. 804, 47 (2015)

    Article  ADS  Google Scholar 

  • Thomas, S.R., Owens, M.J., Lockwood, M.: The 22-year Hale cycle in cosmic ray flux—evidence for direct heliospheric modulation. Sol. Phys. 289, 407 (2014)

    Article  ADS  Google Scholar 

  • Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61 (1998)

    Article  ADS  Google Scholar 

  • Verma, V.K., Joshi, G.C., Uddin, W., Paliwal, D.C.: Search for a 152–158 days periodicity in the occurrence rate of solar flares inferred from spectral data of radio bursts. Astron. Astrophys. 90, 83 (1991)

    ADS  Google Scholar 

  • Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: Magnetic Rossby waves in the solar tachocline and Rieger-type periodicities. Astrophys. J. 709, 749 (2010a)

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Carbonell, M., Oliver, R., Ballester, J.L.: Quasi-biennial oscillations in the solar tachocline caused by magnetic Rossby wave instabilities. Astrophys. J. 724, L95 (2010b)

    Article  ADS  Google Scholar 

  • Zaqarashvili, T.V., Oliver, R., Hanslmeier, A., et al.: Long-term variation in the Sun activity caused by magnetic Rossby waves in the tachocline. Astrophys. J. 805, L14 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Gratitude is expressed to Cláudia Serrano and Samuel Bárias for digitalizing the PG data recorded by Doctor Mário Figueira (former Portuguese Service of Meteorology). The authors are thankful to the Climax Neutron Counter Facility for access to the NC time series and to NOAA for making available the SSA data. Gratitude is also expressed for ELECTRONET (CA15211) COST-Action.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, H.G., Lopes, I. Rieger-type periodicities on the Sun and the Earth during solar cycles 21 and 22. Astrophys Space Sci 362, 44 (2017). https://doi.org/10.1007/s10509-017-3020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3020-4

Keywords

Navigation