Advertisement

Astrophysics and Space Science

, 361:379 | Cite as

On the photogravitational R4BP when the third primary is a triaxial rigid body

  • Md Chand Asique
  • Umakant Prasad
  • M. R. Hassan
  • Md Sanam Suraj
Original Article

Abstract

The present paper deals with the photogravitational restricted four-body problem, when the third primary is placed at the triangular libration point of the restricted three-body problem is a triaxial rigid body. The third primary \(m_{3}\) is not influencing the motion of the dominating primaries \(m_{1}\) and \(m_{2}\). We have studied the motion of \(m_{4}\), moving under the influence of the three primaries \(m_{i}\), \(i=1,2,3\), but the motion of the primaries is not being influenced by infinitesimal mass \(m_{4}\). The aim of this study is to find the locations of equilibrium points and discuss their stability. We have obtained six non-collinear equilibrium points near the third body when the third body is a triaxial rigid body and a source of radiation. There exist at most ten non-collinear equilibrium points in total for this problem. However, the number of equilibrium points depends on the triaxiality parameters. Further, we have drawn the zero velocity surfaces to determine the possible allowed boundary regions. The stability of non-collinear equilibrium points for different mass parameters, radiation parameters and triaxiality of the third body is also studied. The stability regions of the equilibrium points were expanded due to the triaxiality of the third body and various values of the radiation parameter \(q\).

Keywords

R4BP Triaxial rigid body Equilibrium points Stability ZVCs 

References

  1. Alvarez-Ramírez, M., Barrabés, E.: Transport orbits in an equilateral restricted four-body problem. Celest. Mech. Dyn. Astron. 121, 191–210 (2015) ADSMathSciNetCrossRefGoogle Scholar
  2. Alvarez-Ramírez, M., Skea, J.E.F., Stuchi, T.J.: Nonlinear stability analysis in an equilateral restricted four-body problem. Astrophys. Space Sci. 358, 3 (2015) ADSCrossRefGoogle Scholar
  3. Amit, M., Aggarwal, R., Suraj, M.S., Bisht, V.S.: Stability of libration points in the restricted four-body problem with variable mass. Astrophys. Space Sci. 361, 329 (2016) ADSMathSciNetCrossRefGoogle Scholar
  4. Arribas, M., Abad, A., Elipe, A., Palacios, M.: Equilibria of the symmetric collinear restricted four-body problem with radiation pressure. Astrophys. Space Sci. 361, 384 (2016) MathSciNetCrossRefGoogle Scholar
  5. Bhatnagar, K.B., Chawla, J.M.: A study of Lagrangian points in the photogravitational restricted three body problem. Indian J. Pure Appl. Math. 10(11), 1443–1451 (1979) ADSGoogle Scholar
  6. Baltagiannis, A.N., Papadakis, K.E.: Equilibrium points and their stability in the restricted four-body problem. Int. J. Bifurc. Chaos Appl. Sci. Eng. 21, 2179–2193 (2011a) MathSciNetCrossRefMATHGoogle Scholar
  7. Baltagiannis, A.N., Papadakis, K.E.: Families of periodic orbits in the restricted four-body problem. Astrophys. Space Sci. 336, 357–367 (2011b) ADSCrossRefMATHGoogle Scholar
  8. Burgaos-Garcia, J., Gidea, M.: Hill’s approximation in a restricted four-body problem. Celest. Mech. Dyn. Astron. 122, 117–141 (2015) ADSCrossRefMATHGoogle Scholar
  9. Chernikov, Y.A.: The photogravitational restricted three-body problem. Sov. Astron., A.J. 14, 176 (1970) ADSMathSciNetGoogle Scholar
  10. Ceccaroni, M., Biggs, J.: Extension of low-thrust propulsion to the autonomous coplanar circular restricted four body problem with application to future Trojan Asteroid missions. In: 61st International Astronautical Congress, IAC-10-1.1.3, Prague (2010) Google Scholar
  11. Ceccaroni, M., Biggs, J.: Low-thrust propulsion in a coplanar circular restricted four body problem. Celest. Mech. Dyn. Astron. 112, 191–219 (2012) ADSMathSciNetCrossRefMATHGoogle Scholar
  12. Chand, M.A., Umakant, P., Hassan, M.R., Suraj, M.S.: On the R4BP when third primary is an oblate spheroid. Astrophys. Space Sci. 357, 87 (2015a). doi: 10.1007/s10509-015-2235-5 CrossRefGoogle Scholar
  13. Chand, M.A., Umakant, P., Hassan, M.R., Suraj, M.S.: On the photogravitational R4BP when third primary is an oblate/prolate spheroid. Astrophys. Space Sci. 360, 313 (2015b). doi: 10.1007/s10509-015-2522-1 Google Scholar
  14. Croustalloudi, M.N., Kalvouridis, T.J.: The restricted \(2+2\) body problem: parametric variation of the equilibrium states of the minor bodies and their attracting regions. ISRN Astron. Astrophys. 2013, 281849 (2013) CrossRefGoogle Scholar
  15. Gascheau, M.: Examen d-’une classe d’-équations différentielles et application à un cas particulier du problème des trois corps. C. R. Acad. Sci. 16, 343 (1843) Google Scholar
  16. Hadjidemetriou, J.D.: The restricted planetary 4-body problem. Celest. Mech. 21, 63–71 (1980) ADSMathSciNetCrossRefMATHGoogle Scholar
  17. Moulton, F.R.: On a class of particular solutions of the problem of four bodies. Trans. Am. Math. Soc. 1, 17 (1900) MathSciNetCrossRefMATHGoogle Scholar
  18. Kalvouridis, T., Arribas, M., Elipe, A.: Dynamical properties of the restricted four-body problem with radiation pressure. Mech. Res. Commun. 33, 811 (2006a) MathSciNetCrossRefMATHGoogle Scholar
  19. Kalvouridis, T., Arribas, M., Elipe, A.: The photo-gravitational restricted four-body problem: an exploration of its dynamical properties. AIP Conf. Proc. 848, 637 (2006b) ADSCrossRefMATHGoogle Scholar
  20. Kumari, R., Kushvah, B.S.: Equilibrium points and zero velocity surfaces in the restricted four-body problem with solar wind drag. Astrophys. Space Sci. 344, 347–359 (2013) ADSCrossRefMATHGoogle Scholar
  21. Papadouris, J.P., Papadakis, K.E.: Equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 344, 21–38 (2013) ADSCrossRefMATHGoogle Scholar
  22. Papadakis, K.E.: Families of three dimensional periodic solutions in the circular restricted four-body problem. Astrophys. Space Sci. 361, 129 (2016) ADSMathSciNetCrossRefGoogle Scholar
  23. Radzievskii, V.V.: Astron. Ž. 27, 250–256 (1950). (In Russian) MathSciNetGoogle Scholar
  24. Radzievskii, V.V.: Astron. Ž. 28, 363–372 (1951). (In Russian) Google Scholar
  25. Ragos, O., Zafiropoulos, F.A., Vrahatis, M.N.: A numerical study of the influence of the Poynting–Robertson effect on the equilibrium points of the photo-gravitational restricted three-body problem: II. Out of plane case. Astron. Astrophys. 300, 579–590 (1995) ADSGoogle Scholar
  26. Routh, E.J.: On Laplace’s three particles, with a supplement on the stability of steady motion. Proc. Lond. Math. Soc. 6, 86–97 (1875) MathSciNetMATHGoogle Scholar
  27. Schuerman, D.: The restricted three-body problem including radiation pressure. Astrophys. J. 238, 337–342 (1980) ADSMathSciNetCrossRefGoogle Scholar
  28. Singh, J., Vincent, A.E.: Out-of-plane equilibrium points in the photogravitational restricted four-body problem. Astrophys. Space Sci. 359, 38 (2015a) ADSCrossRefGoogle Scholar
  29. Singh, J., Vincent, A.E.: Effect of perturbations in the Coriolis and centrifugal forces on the stability of equilibrium points in the restricted four-body problem. Few-Body Syst. 56, 713–723 (2015b). doi: 10.1007/s00601-015-1019-3 ADSCrossRefGoogle Scholar
  30. Singh, J., Vincent, A.E.: Equilibrium points in the restricted four-body problem with radiation pressure. Few-Body Syst. 57(1), 83–91 (2016). doi: 10.1007/s00601-015-1030-8 ADSCrossRefGoogle Scholar
  31. Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145–187 (1985) ADSMathSciNetCrossRefMATHGoogle Scholar
  32. Suraj, M.S., Hassan, M.R.: Sitnikov restricted four-body problem with radiation pressure. Astrophys. Space Sci. 349(2), 705–716 (2014) ADSCrossRefGoogle Scholar
  33. Suraj, M.S., Hassan, M.R., Chand, M.A.: The photo-gravitational R3BP when the primaries are heterogeneous spheroid with three layers. J. Astronaut. Sci. 61, 133–155 (2014) CrossRefGoogle Scholar
  34. Zotos, E.E.: Escape and collision dynamics in the planar equilateral restricted four- body problem. Int. J. Non-Linear Mech. 86, 66–82 (2016) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Md Chand Asique
    • 1
  • Umakant Prasad
    • 2
  • M. R. Hassan
    • 3
  • Md Sanam Suraj
    • 4
  1. 1.Research Scholar, P.G. Department of PhysicsTMBUBhagalpurIndia
  2. 2.Department of PhysicsTNB CollegeBhagalpurIndia
  3. 3.P.G. Department of MathematicsSM CollegeBhagalpurIndia
  4. 4.Department of Mathematics, Sri Guru Teg Bahadur Khalsa College, North CampusUniversity of DelhiNew DelhiIndia

Personalised recommendations