Skip to main content

Relativistic compact anisotropic charged stellar models with Chaplygin equation of state

Abstract

This paper presents a new model of static spherically symmetric relativistic charged stellar objects with locally anisotropic matter distribution together with the Chaplygin equation of state. The interior spacetime has been matched continuously to the exterior Reissner–Nordström geometry. Different physical properties of the stellar model have been investigated, analyzed, and presented graphically.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Throughout the work we will use \(c=G=1\), except in figures.

References

  1. Abreu, H., Hernández, H., Núñez, L.A.: Class. Quantum Gravity 24, 4631 (2007). doi:10.1088/0264-9381/24/18/005

    ADS  Article  Google Scholar 

  2. Andréasson, H.: Commun. Math. Phys. 288, 715 (2009). doi: 10.1007/s00220-008-0690-3

    ADS  Article  Google Scholar 

  3. Bekenstein, J.D.: Phys. Rev. D 4, 2185 (1971). doi:10.1103/PhysRevD.4.2185

    ADS  Article  Google Scholar 

  4. Bernardini, A.E., Bertolami, O.: Phys. Rev. D 72, 123512 (2005). doi:10.1103/PhysRevD.80.123011

    ADS  Article  Google Scholar 

  5. Bhar, P.: Astrophys. Space Sci. 359, 41 (2015). doi:10.1007/s10509-015-2492-3

    ADS  Article  Google Scholar 

  6. Bhar, P., Rahaman, F.: Eur. Phys. J. C 75, 41 (2015). doi:10.1140/epjc/s10052-015-3270-7

    ADS  Article  Google Scholar 

  7. Bhar, P., Murad, M.H., Pant, N.: Astrophys. Space Sci. 359, 13 (2015). doi:10.1007/s10509-015-2462-9

    ADS  Article  Google Scholar 

  8. Böhmer, C.G., Harko, T.: Class. Quantum Gravity 23, 6479 (2006). doi:10.1088/0264-9381/23/22/023

    ADS  Article  Google Scholar 

  9. Böhmer, C.G., Harko, T.: Gen. Relativ. Gravit. 39, 757 (2007). doi:10.1007/s10714-007-0417-3

    ADS  Article  Google Scholar 

  10. Bondi, H.: Proc. R. Soc. Lond. A 281, 39 (1964). doi:10.1098/rspa.1964.0167

    ADS  MathSciNet  Article  Google Scholar 

  11. Bonnor, W.B.: Z. Phys. 160, 59 (1960). doi:10.1007/BF01337478

    ADS  MathSciNet  Article  Google Scholar 

  12. Bonnor, W.B.: Mon. Not. R. Astron. Soc. 129, 443 (1965). doi: 10.1093/mnras/129.6.443

    ADS  MathSciNet  Article  Google Scholar 

  13. Bonnor, W.B., Vickers, P.A.: Gen. Relativ. Gravit. 13, 29 (1981). doi:10.1007/BF00766295

    ADS  Google Scholar 

  14. Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974). doi:10.1086/152760

    ADS  Article  Google Scholar 

  15. Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959). doi:10.1103/PhysRev.116.1027

    ADS  MathSciNet  Article  Google Scholar 

  16. Chan, R., Herrera, L., Santos, N.O.: Mon. Not. R. Astron. Soc. 265, 533 (1993). doi:10.1093/mnras/265.3.533

    ADS  Article  Google Scholar 

  17. Chan, R., Silva, M.F.A.D., Rocha, J.F.V.D.: Gen. Relativ. Gravit. 43, 2223 (2011). doi:10.1007/s10714-011-1178-6

    ADS  Article  Google Scholar 

  18. Darmois, G.: Fascicule 25, 1 (1927)

    Google Scholar 

  19. Gokhroo, M.K., Mehra, A.L.: Gen. Relativ. Gravit. 26, 75 (1994). doi:10.1007/BF02088210

    ADS  MathSciNet  Article  Google Scholar 

  20. Herrera, L.: Phys. Lett. A 165, 206 (1992). doi:10.1016/0375-9601(92)90036-L

    ADS  MathSciNet  Article  Google Scholar 

  21. Herrera, L., Santos, N.: Phys. Rep. 286, 53 (1997). doi:10.1016/S0370-1573(96)00042-7

    ADS  MathSciNet  Article  Google Scholar 

  22. Herrera, L., Ruggeri, G., Witten, L.: Astrophys. J. 234, 1094 (1979). doi:10.1086/157592

    ADS  Article  Google Scholar 

  23. Israel, W.: Nuovo Cimento B 44, 1 (1966). doi:10.1007/BF02710419

    ADS  Article  Google Scholar 

  24. Israel, W.: Nuovo Cimento B 48, 463 (1967). doi:10.1007/BF02712210

    ADS  Article  Google Scholar 

  25. Ivanov, B.V.: Phys. Rev. D 65, 104011 (2002). doi:10.1103/PhysRevD.65.104011

    ADS  Article  Google Scholar 

  26. Joshi, P.S.: Global Aspects in Gravitation and Cosmology. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  27. Jun, Y.: Commun. Theor. Phys. 52, 1016 (2009). doi:10.1088/0253-6102/52/6/08

    ADS  Article  Google Scholar 

  28. Kippenhahn, R., Weigert, A., Weiss, A.: Stellar Structure and Evolution, 2nd ed. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-30304-3

    Book  MATH  Google Scholar 

  29. Komathiraj, K., Maharaj, S.D.: Gen. Relativ. Gravit. 39, 2079 (2007). doi:10.1007/s10714-007-0510-7

    ADS  MathSciNet  Article  Google Scholar 

  30. Lichnerowicz, A.: Théories relativistes de la gravitation et de l’électromagnétisme (1955)

    MATH  Google Scholar 

  31. Lobo, S.N.F.: Class. Quantum Gravity 23, 1525 (2006). doi:10.1088/0264-9381/23/5/006

    ADS  MathSciNet  Article  Google Scholar 

  32. Oppenheimer, J.R., Volkoff, G.M.: Phys. Rev. 55, 374 (1939). doi:10.1103/PhysRev.55.374

    ADS  Article  Google Scholar 

  33. Paul, B.C., Tikekar, R.: Gravit. Cosmol. 11, 244 (2005)

    ADS  Google Scholar 

  34. Ponce de León, J.: Gen. Relativ. Gravit. 19, 797 (1987). doi:10.1007/BF00768215

    ADS  Article  Google Scholar 

  35. Rahaman, F., Ray, S., Jafry, A.K., Chakraborty, K.: Phys. Rev. 82, 104055 (2010). doi:10.1103/PhysRevD.82.104055

    Google Scholar 

  36. Ruderman, R.: Annu. Rev. Astron. Astrophys. 10, 427 (1972). doi:10.1146/annurev.aa.10.090172.002235

    ADS  Article  Google Scholar 

  37. Stettner, R.: Ann. Phys. 80, 212 (1973). doi:10.1016/0003-4916(73)90325-4

    ADS  Article  Google Scholar 

  38. Thirukkanesh, S., Ragel, F.C., Lortan, D.B.: Int. J. Mod. Phys. D 24, 1550002 (2015). doi:10.1142/S0218271815500029

    ADS  Article  Google Scholar 

  39. Thomas, V.O., Ratanpal, B.S., Vinodkumar, P.C.: Int. J. Mod. Phys. D 14, 85 (2005). doi:10.1142/S0218271805005852

    ADS  Article  Google Scholar 

  40. Tikekar, R., Thomas, V.O.: Pramana J. Phys. 50, 95 (1998). doi:10.1007/BF02847521

    ADS  Article  Google Scholar 

  41. Tolman, R.C.: Phys. Rev. 55, 364 (1939). doi:10.1103/PhysRev.55.364

    ADS  Article  Google Scholar 

  42. Varela, V., Rahaman, F., Ray, S., Chakraborty, K., Kalam, M.: Phys. Rev. D 82, 044052 (2010). doi:10.1103/PhysRevD.82.044052

    ADS  Article  Google Scholar 

Download references

Acknowledgements

One of the authors (M.H. Murad) is greatly indebted to his wife S. Fatema, Department of Natural Sciences, Faculty of Science and Information Technology, Daffodil International University, Dhaka, Bangladesh, for her inspirations and continuous support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Piyali Bhar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhar, P., Murad, M.H. Relativistic compact anisotropic charged stellar models with Chaplygin equation of state. Astrophys Space Sci 361, 334 (2016). https://doi.org/10.1007/s10509-016-2923-9

Download citation

Keywords

  • General relativity
  • Relativistic astrophysics
  • Exact solution
  • Anisotropic fluid sphere
  • Charged fluid sphere
  • Compact stars
  • Relativistic stars
  • Equation of state