Skip to main content
Log in

Role of nonlinear localized structures and turbulence in magnetized plasma

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In the present study, we have analyzed the field localization of kinetic Alfvén wave (KAW) due to the presence of background density perturbation, which are assumed to be originated by the three dimensionally propagating low frequency KAW. These localized structures play an important role for energy transportation at smaller scales in the dispersion range of magnetic power spectrum. For the present model, governing dynamic equations of high frequency pump KAW and low frequency KAW has been derived by considering ponderomotive nonlinearity. Further, these coupled equations have been numerically solved to analyze the resulting localized structures of pump KAW and magnetic power spectrum in the magnetopause regime. Numerically calculated spectrum exhibits inertial range having spectral index of \(-3/2\) followed by steeper scaling; this steepening in the turbulent spectrum is a signature of energy transportation from larger to smaller scales. In this way, the proposed mechanism, which is based on nonlinear wave-wave interaction, may be useful for understanding the particle acceleration and turbulence in magnetopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alfvén, H.: Existence of electromagnetic hydrodynamic waves. Nature (London) 150, 405 (1942)

    Article  ADS  Google Scholar 

  • Brodin, G., Stenflo, L.: Coupling coefficients for ion-cyclotron Alfvén waves. Contrib. Plasma Phys. 30, 413 (1990)

    Article  ADS  Google Scholar 

  • Brodin, G., Stenflo, L., Shukla, P.K.: Nonlinear interactions between kinetic Alfvén and ion-sound waves. Sol. Phys. 236, 285 (2006)

    Article  ADS  Google Scholar 

  • Champeaux, S., Passot, T., Sulem, P.L.: Alfvén wave filamentation. J. Plasma Phys. 58, 665 (1997)

    Article  ADS  MATH  Google Scholar 

  • Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q., Pongkitiwanichakul, P.: Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements. Astrophys. J. 707, 1668 (2009)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Wilber, M., Mozer, F.S., Fujimoto, M., Goldstein, M.L., Acuna, M., Reme, H., Fazakerley, A.: Mode conversion and anomalous transport in Kelvin-Helmholtz vortices and kinetic Alfvén waves at the Earth’s magnetopause. Phys. Rev. Lett. 99, 175004 (2007)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Bonnell, J., McFadden, J.P., Carlson, C.W., Cully, C., Le Contel, O., Roux, A., Auster, H.U., Glassmeier, K.H., Angelopoulos, V., Russell, C.T.: Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophys. Res. Lett. 35, L17S08 (2008)

    Article  Google Scholar 

  • Chen, C.H.K., Salem, C.S., Bonnell, J.W., Mozer, F.S., Bale, S.D.: Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. 109, 035001 (2012)

    Article  ADS  Google Scholar 

  • Damiano, P.A., Wright, A.N., Mckenzie, J.F.: Properties of hall magnetohydrodynamic modified by electron inertia and finite Larmor radius effects. Phys. Plasmas 16, 062901 (2009)

    Article  ADS  Google Scholar 

  • Dastgeer, D., Shukla, P.K.: 3D simulations of fluctuation spectra in the hall-MHD plasma. Phys. Rev. Lett. 102, 045004 (2009)

    Article  Google Scholar 

  • Hasegawa, A.: Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res. 81, 5083 (1976)

    Article  ADS  Google Scholar 

  • Hasegawa, A., Chen, L.: Parametric decay of “kinetic Alfvén wave” and its application to plasma heating. Phys. Rev. Lett. 36, 1362 (1976)

    Article  ADS  Google Scholar 

  • Hasegawa, A., Mima, K.: Anomalous transport produced by kinetic Alfvén wave turbulence. J. Geophys. Res. 83(A3), 1117 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  • Howes, G.G.: A dynamical model of plasma turbulence in the solar wind. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 373, 20140145 (2015)

    Article  ADS  Google Scholar 

  • Howes, G.G., Cowley, S.C., Dorland, W., Hammett, G.W., Quataert, E., Schekochihin, A.A.: A model of turbulence in magnetized plasmas: implications for the dissipation range in the solar wind. J. Geophys. Res. 113, A05103 (2008)

    Article  ADS  Google Scholar 

  • Johnson, J.R., Cheng, C.Z.: Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys. Res. Lett. 24, 1423 (1997)

    Article  ADS  Google Scholar 

  • Johnson, J.R., Cheng, C.Z., Song, P.: Signatures of mode conversion and kinetic Alfvén waves at the magnetopause. Geophys. Res. Lett. 28, 227 (2001)

    Article  ADS  Google Scholar 

  • Lee, L.C., Johnson, J.R., Ma, Z.W.: Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. J. Geophys. Res. 99(A9), 17405 (1994)

    Article  ADS  Google Scholar 

  • Lin, Y., Johnson, J.R., Wang, X.: Three-dimensional mode conversion associated with kinetic Alfvén waves. Phys. Rev. Lett. 109, 125003 (2012)

    Article  ADS  Google Scholar 

  • Pokhotelov, O.A., Onishchenko, O.G., Sagdeev, R.Z., Treumann, R.A.: Nonlinear dynamics of inertial Alfvén waves in the upper ionosphere: parametric generation of electrostatic convective cells. J. Geophys. Res. 108(A7), 1291 (2003)

    Article  Google Scholar 

  • Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., Tatsuno, T.: Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. Astrophys. J. 182, 310 (2009)

    Article  ADS  Google Scholar 

  • Sharma, P., Yadav, N., Sharma, R.P.: Nonlinear interaction of 3D kinetic Alfvén wave and fast magnetosonic wave. J. Geophys. Res. 119, 6569 (2014)

    Article  Google Scholar 

  • Sharma, P., Yadav, N., Sharma, R.P.: Study of nonlinear 3-D evolution of kinetic Alfvén wave and fluctuation spectra. Astrophys. Space Sci. 360, 18 (2015)

    Article  ADS  Google Scholar 

  • Shukla, P.K.: Excitation of zonal flows by kinetic Alfvén waves. Phys. Plasmas 12, 012310 (2005)

    Article  ADS  Google Scholar 

  • Shukla, P.K.: Alfvénic tornadoes in magnetized plasma. J. Geophys. Res. 118, 1 (2013)

    Article  Google Scholar 

  • Shukla, A., Sharma, R.P.: Transient filaments formation by nonlinear kinetic Alfvén waves and its effect on solar wind turbulence and coronal heating. Phys. Plasmas 8, 3759 (2001)

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., Streltsov, A., Wahlund, J.E.: Small scale Alfvén ic structure in the aurora. Space Sci. Rev. 92, 423 (2000a)

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Lundin, R., Marklund, G.: Stochastic ion heating by orbit chaotization on electrostatic waves and nonlinear structures. Phys. Scr. T 84, 60 (2000b)

    Article  ADS  Google Scholar 

  • Voitenko, Yu.M.: Three-wave coupling and weak turbulence of kinetic Alfvén waves. J. Plasma Phys. 60(3), 515 (1998)

    Article  ADS  Google Scholar 

  • Voitenko, Y., De Keyser, J.: Turbulent spectra and spectral kinks in the transition range from MHD to kinetic Alfvén turbulence. Nonlinear Process. Geophys. 18, 587 (2011)

    Article  ADS  Google Scholar 

  • Voitenko, Y., Goossens, M.: Cross-scale nonlinear coupling and plasma energization by Alfvén waves. Phys. Rev. Lett. 94, 135003 (2005)

    Article  ADS  Google Scholar 

  • Wu, D.J., Yang, L.: Anisotropic and mass-dependent energization of heavy ions by kinetic Alfvén waves. Astron. Astrophys. 452, L7–L10 (2006)

    Article  ADS  Google Scholar 

  • Yadav, N., Sharma, R.P.: Nonlinear interaction of 3D kinetic Alfvén waves and ion acoustic waves in solar wind plasmas. Sol. Phys. 289, 1809 (2014)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: On nonlinear decay of kinetic Alfvén waves and application to some processes in space plasmas. J. Geophys. Res. 115, A12227 (2010)

    ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: Kinetic Alfvén waves excited by oblique magnetohydrodynamic Alfvén waves in coronal holes. Astrophys. J. 735, 114 (2011a)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y., Yang, L., Yu, M.Y.: Generation of convective cells by kinetic Alfvén waves. New J. Phys. 13, 063043 (2011b)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: Kinetic Alfvén waves excited by oblique magnetohydrodynamic Alfvén waves in coronal holes. Astrophys. J. 735, 114 (2011c)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Yu, M.Y., Lu, J.Y.: Convective cell generation by kinetic Alfvén wave turbulence in the auroral ionosphere. Phys. Plasmas 19, 062901 (2012)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: Kinetic Alfvén turbulence and parallel electric fields in flare loops. Astrophys. J. 767, 109 (2013)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Voitenko, Y., Wu, D.J., De Keyser, J.: Nonlinear generation of kinetic-scale waves by magnetohydrodynamic Alfvén waves and nonlocal spectral transport in the solar wind. Astrophys. J. 785, 139 (2014)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Voitenko, Y., De Keyser, J., Wu, D.J.: Scalar and vector nonlinear decays of low-frequency Alfvén waves. Astrophys. J. 799, 222 (2015)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Voitenko, Y.M., Wu, D.J., Yu, M.Y.: Kinetic Alfvén turbulence below and above ion cyclotron frequency. J. Geophys. Res. 121, 5 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Indian Space Research Organization (ISRO) and Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Pathak.

Appendix: Expressions for ponderomotive force

Appendix: Expressions for ponderomotive force

For electrons, the components of ponderomotive force due to 3-D KAW are

$$\begin{aligned} F_{ex} &= - \frac{m_{e}}{4} \biggl[ \biggl( \frac{c\alpha k_{0y}}{B_{0}} \biggr) ^{2} - \biggl( \frac{k_{0 \bot }^{2}}{4\pi n_{0}m_{i}} \biggr) \biggr] \frac{ \partial \vert A_{z} \vert ^{2}}{\partial x} \\ &\quad + \frac{m_{e}}{4} \biggl( \frac{k_{0x}k_{0y}c^{2}\alpha^{2}}{B_{0}^{2}} \biggr) \frac{\partial \vert A_{z} \vert ^{2}}{\partial y} \\ &\quad - \frac{m_{e}}{4} \biggl[ \biggl( \frac{ic ^{2}\alpha k_{0y}k_{0 \bot }^{2}}{4\pi n_{0}eB_{0}} \biggr) \biggr] \frac{ \partial \vert A_{z} \vert ^{2}}{\partial z} \\ F_{ey} &= \frac{m_{e}}{4} \biggl( \frac{c\alpha k_{0y}}{B_{0}} \biggr) ^{2}\frac{\partial \vert A_{z} \vert ^{2}}{\partial x} - \frac{m _{e}}{4} \biggl[ \biggl( \frac{c\alpha k_{0x}}{B_{0}} \biggr) ^{2} \\ &\quad - \biggl( \frac{k_{0 \bot }^{2}}{4\pi n_{0}m_{i}} \biggr) \biggr] \frac{ \partial \vert A_{z} \vert ^{2}}{\partial y} + \frac{m_{e}}{4} \biggl[ \biggl( \frac{ic^{2}\alpha k_{0y}}{4\pi n_{0}eB_{0}} \biggr) \biggr] \frac{ \partial \vert A_{z} \vert ^{2}}{\partial z} \\ F_{ez} &= \frac{m_{e}}{4} \biggl[ \biggl( \frac{i\alpha k_{0y}k_{0 \bot } ^{2}c^{2}}{4\pi n_{0}eB_{0}} \biggr) + \biggl( \frac{i\alpha ek_{0y}}{m _{e}B_{0}} \biggr) \biggr] \frac{\partial \vert A_{z} \vert ^{2}}{ \partial x} \\ &\quad - \frac{m_{e}}{4} \biggl[ \biggl( \frac{i\alpha k_{0x}k_{0 \bot }^{2}c^{2}}{4\pi n_{0}eB_{0}} \biggr) + \biggl( \frac{i\alpha ek _{0x}}{m_{e}B_{0}} \biggr) \biggr] \frac{\partial \vert A_{z} \vert ^{2}}{\partial y} \\ &\quad - \frac{m_{e}}{4} \biggl[ \biggl( \frac{k_{0 \bot } ^{2}c}{4\pi n_{0}e} \biggr) ^{2} \biggr] \frac{\partial \vert A_{z} \vert ^{2}}{\partial z} \end{aligned}$$

Similarly for ions, the components of ponderomotive force due to 3-D KAW are

$$\begin{aligned} F_{ix} &= - \frac{m_{i}}{4} \biggl[ \biggl( \frac{Pc\alpha k_{0y}}{B_{0}} \biggr) ^{2} + \biggl( \frac{Qc\alpha k_{0x}}{B_{0}} \biggr) ^{2} \\ &\quad - \frac{e ^{2}}{m_{i}^{2}} \biggl( \frac{k_{0z}\alpha }{\omega_{0}c} - \frac{1}{c ^{2}} \biggr) \biggr] \frac{\partial \vert A_{z} \vert ^{2}}{\partial x} \\ &\quad - \frac{m_{i}}{4} \biggl[ \biggl( \biggl( \frac{Qc\alpha }{B_{0}} \biggr) ^{2} - \biggl( \frac{Pc\alpha }{B_{0}} \biggr) ^{2} \biggr) k_{0x}k_{0y} \\ &\quad + i \biggl( \frac{c\alpha k_{0x}}{B_{0}} \biggr) ^{2}PQ + i \biggl( \frac{c \alpha k_{0Y}}{B_{0}} \biggr) ^{2}PQ \biggr] \frac{\partial \vert A _{z} \vert ^{2}}{\partial y} \\ &\quad - \frac{m_{i}}{4} \biggl[ \biggl( \frac{Qe\alpha k_{0x}}{m_{i}B_{0}} \biggr) + i \biggl( \frac{Pe\alpha k_{0y}}{m_{i}B_{0}} \biggr) \\ &\quad - i \biggl( \frac{ceP \alpha^{2}}{m_{i}B_{0}\omega_{0}} \biggr) k_{0Y}k_{0z} - \biggl( \frac{Qce \alpha^{2}}{m_{i}B_{0}\omega_{0}} \biggr) k_{0x}k_{0z} \biggr] \frac{ \partial \vert A_{z} \vert ^{2}}{\partial z} \\ F_{iy} &= - \frac{m_{i}}{4} \biggl[ \biggl( \biggl( \frac{Qc\alpha }{B_{0}} \biggr) ^{2} - \biggl( \frac{Pc\alpha }{B_{0}} \biggr) ^{2} \biggr) k_{0x}k_{0y} \\ &\quad - i \biggl( \frac{c\alpha k_{0y}}{B_{0}} \biggr) ^{2}PQ - i \biggl( \frac{c\alpha k_{0x}}{B_{0}} \biggr) ^{2}PQ \biggr] \frac{ \partial \vert A_{z} \vert ^{2}}{\partial x} \\ &\quad - \frac{m_{i}}{4} \biggl[ \biggl( \frac{Pc\alpha k_{0x}}{B_{0}} \biggr) ^{2} + \biggl( \frac{Qc\alpha k_{0y}}{B_{0}} \biggr) ^{2} \\ &\quad - \frac{e^{2}}{m _{i}^{2}} \biggl( \frac{k_{0z}\alpha }{\omega_{0}c} - \frac{1}{c^{2}} \biggr) \biggr] \frac{\partial \vert A_{z} \vert ^{2}}{\partial y} \\ &\quad - \frac{m_{i}}{4} \biggl[ i \biggl( \frac{Pce\alpha^{2}}{m_{i}B_{0}\omega _{0}} \biggr) k_{0x}k_{0z} - \biggl( \frac{Pce\alpha^{2}}{m_{i}B_{0} \omega_{0}} \biggr) k_{0y}k_{0z} \\ &\quad - i \biggl( \frac{Pe\alpha k_{0x}}{m _{i}B_{0}} \biggr) + \biggl( \frac{Qe\alpha k_{0y}}{m_{i}B_{0}} \biggr) \biggr] \frac{\partial \vert A_{z} \vert ^{2}}{\partial z} \\ F_{iz}& = - \frac{m_{i}}{4} \biggl[ i \biggl( \frac{Pce\alpha^{2}}{m_{i}B _{0}\omega_{0}} \biggr) k_{0y}k_{0z} - \biggl( \frac{ceQ\alpha^{2}}{m _{i}B_{0}\omega_{0}} \biggr) k_{0x}k_{0z} \biggr] \\ &\quad \times \frac{\partial \vert A_{z} \vert ^{2}}{\partial x} - \frac{m_{i}}{4} \biggl[ i \biggl( \frac{Pce\alpha^{2}}{m_{i}B_{0}\omega _{0}} \biggr) k_{0x}k_{0z} \\ &\quad + \biggl( \frac{ceQ\alpha^{2}}{m_{i}B_{0} \omega_{0}} \biggr) k_{0y}k_{0z} \biggr] \frac{\partial \vert A_{z} \vert ^{2}}{\partial y} - \frac{m_{i}}{4} \biggl[ \biggl( \frac{ek_{0z}\alpha }{m_{i}\omega_{0}} \biggr) ^{2} \\ &\quad - 2 \biggl( \frac{e^{2}k_{0z}\alpha }{m_{i}^{2}\omega_{0}c} \biggr) + \biggl( \frac{e}{m_{i}c} \biggr) ^{2} \biggr] \frac{\partial \vert A _{z} \vert ^{2}}{\partial z} \end{aligned}$$

Here \(P = \frac{\omega_{ci}^{2}}{ ( \omega_{ci}^{2} - \omega_{0} ^{2} ) }\), \(Q = \frac{\omega_{ci}\omega_{0}}{ ( \omega_{ci} ^{2} - \omega_{0}^{2} ) }\), \(\alpha = \frac{v_{A}^{2}k_{0z}}{c \omega_{0}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, N., Yadav, N., Uma, R. et al. Role of nonlinear localized structures and turbulence in magnetized plasma. Astrophys Space Sci 361, 287 (2016). https://doi.org/10.1007/s10509-016-2871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2871-4

Keywords

Navigation