Juno’s Earth flyby: the Jovian infrared Auroral Mapper preliminary results

  • A. Adriani
  • M. L. Moriconi
  • A. Mura
  • F. Tosi
  • G. Sindoni
  • R. Noschese
  • A. Cicchetti
  • G. Filacchione


The Jovian InfraRed Auroral Mapper, JIRAM, is an image-spectrometer onboard the NASA Juno spacecraft flying to Jupiter. The instrument has been designed to study the aurora and the atmosphere of the planet in the spectral range 2–5 μm. The very first scientific observation taken with the instrument was at the Moon just before Juno’s Earth fly-by occurred on October 9, 2013. The purpose was to check the instrument regular operation modes and to optimize the instrumental performances. The testing activity will be completed with pointing and a radiometric/spectral calibrations shortly after Jupiter Orbit Insertion. Then the reconstruction of some Moon infrared images, together with co-located spectra used to retrieve the lunar surface temperature, is a fundamental step in the instrument operation tuning. The main scope of this article is to serve as a reference to future users of the JIRAM datasets after public release with the NASA Planetary Data System.


Jupiter Moon Instruments and techniques Image processing Modeling 



This work was supported by the Italian Space Agency under the ASI-INAF contracts n. I/010/10/0 and n. 2014-050-R.0. JIRAM was developed under the leadership of INAF, Italy’s National Institute for Astrophysics, Rome. The instrument was built by LEONARDO SPA, Campi Bisenzio (Fi), Italy.


  1. Acton, C.H.: Planet. Space Sci. 44, 65 (1996) ADSCrossRefGoogle Scholar
  2. Adriani, A., Moriconi, M.L., Filacchione, G., et al.: Mem. Soc. Astron. Ital. Suppl. 11 (2007) Google Scholar
  3. Adriani, A., Filacchione, G., Di Iorio, T., et al.: Space Sci. Rev. (2014). doi: 10.1007/s11214-014-0094-y Google Scholar
  4. Bolton, S.: The Juno Mission. In: European Planetary Science Congress, Madrid, Spain (2012) Google Scholar
  5. Brown, R.H., Baines, K.H., Bellucci, G., et al.: Space Sci. Rev. 115, 111 (2004) ADSCrossRefGoogle Scholar
  6. Capaccioni, F., Coradini, A., Filacchione, G., et al.: Science 347, 6220 (2015). doi: 10.1126/science. aaa0628 CrossRefGoogle Scholar
  7. Chin, G., Brylow, S., Foote, M., et al.: Space Sci. Rev. 129, 391 (2007) ADSCrossRefGoogle Scholar
  8. Coradini, A., Capaccioni, F., Drossart, P., et al.: Space Sci. Rev. 128, 529 (2007) ADSCrossRefGoogle Scholar
  9. Coradini, A., Capaccioni, F., Erard, S., et al.: Science 334(6055), 492 (2011) ADSCrossRefGoogle Scholar
  10. De Sanctis, M.C., Coradini, A., Ammannito, E., et al.: Space Sci. Rev. 163, 329 (2011) ADSCrossRefGoogle Scholar
  11. Filacchione, G.: Ph.D. thesis, Università degli Studi di Napoli Federico II (2006) Google Scholar
  12. Hicks, M.D., Buratti, B.J., Nettles, J., et al.: J. Geophys. Res. 116, E00G15 (2011). doi: 10.1029/2010JE003733 ADSCrossRefGoogle Scholar
  13. Hueso, R., Legarreta, J., Rojas, J.F., et al.: Adv. Space Res. 46 (2010). doi: 10.1016/j.asr.2010.05.016
  14. Keihm, S., Tosi, F., Kamp, L., et al.: Icarus 221, 395 (2012) ADSCrossRefGoogle Scholar
  15. Matsunaga, T., Ohtake, M., Haruyama, J., et al.: J. Geophys. Res. 35, L23201 (2008). doi: 10.1029/2008GL035868 ADSGoogle Scholar
  16. McCord, T.B., Clark, R.N., Hawke, B.R., et al.: J. Geophys. Res. 86, 10883 (1981) ADSCrossRefGoogle Scholar
  17. McCord, T.B., Coradini, A., Hibbitts, C.A., et al.: Icarus 172, 104 (2004) ADSCrossRefGoogle Scholar
  18. Ohtake, M., Matsunaga, T., Yokota, Y., et al.: Space Sci. Rev. 154, 57 (2010) ADSCrossRefGoogle Scholar
  19. Piccioni, G., Drossart, P., Suetta, E., et al.: ESA Publications, SP-1295 (2007) Google Scholar
  20. Pieters, C.M.: Remote geochemical analysis: elemental and mineralogical composition. In: Pieters, C., Englert, P. (eds.) Compositional Diversity and Stratigraphy of the Lunar Crust Derived from Reflectance Spectroscopy. Cambridge University Press, Cambridge (1993) Google Scholar
  21. Pieters, C.M., Head, J.W., Sunshine, J.M., et al.: J. Geophys. Res., Solid Earth 98(17), 127 (1993) Google Scholar
  22. Pieters, C.M., Boardman, J., Buratti, B., et al.: Curr. Sci. 96, 500 (2009) Google Scholar
  23. Rodgers, C.D.: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific, Singapore (2000) CrossRefzbMATHGoogle Scholar
  24. Smith, J.R.: Introduction to Geodesy: The History and Concepts of Modern Geodesy. Wiley, New York (1997) Google Scholar
  25. Spencer, J.R., Lebofsky, L.A., Sykes, M.V.: Icarus 78, 337 (1989) ADSCrossRefGoogle Scholar
  26. Tompkins, S., Pieters, C.: Meteorit. Planet. Sci. 34, 2541 (1999) CrossRefGoogle Scholar
  27. Tosi, F., et al.: Icarus 240, 36 (2014) ADSCrossRefGoogle Scholar
  28. Vasavada, A.R., Bandfield, J.L., Greenhagen, B.T., Hayne, P.O., et al.: J. Geophys. Res. 117, E00H18 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute for Space Astrophysics and PlanetologyIAPS-INAFRomeItaly
  2. 2.Institute of Climate and Atmospheric ScienceISAC-CNRRomeItaly

Personalised recommendations