Existence of traversable wormholes in the spherical stellar systems

Abstract

Potentiality of the presence of traversable wormholes in the outer/inner regions of the halos of galaxies, situated on the Navarro-Frenk-White (NFW) density profile and Universal Rotation Curve (URC) dark matter models have been investigated recently (Rahaman et al. in Eur. Phys. J. C 74:2750, 2014a; Rahaman et al. in Ann. Phys. 350:561–567, 2014b; Kuhfittig in Eur. Phys. J. C 74:2818, 2014a; Kuhfittig in Found. Phys. 7:111–119, 2014b; Kuhfittig in Int. J. Mod. Phys. D 24(03):1550023, 2015; Rahaman et al. in Astrophys. Space Sci. 361(1):37, 2016a; Rahaman et al. in Astrophys. Space Sci. 361(3):90, 2016b). Since this covers our own galaxy also as a possible home for traversable wormholes it prompts us to further the subject by considering alternative density distributions. From this token herein we make use of the Einasto model (Einasto in Tr. Inst. Astrofiz. Alma-Ata 5:87, 1965; Einasto and Haud in Galaxy Astron. Astrophys. 223:89, 1989; Merritt et al. in Astron. J. 132:6, 2006) to describe the density profiles for the same purpose. Our choice for the latter is based on the fact that theoretical dark matter halos produced in computer simulations are best described by such a profile. For technical reasons we trim the number of parameters in the Einasto profile to a possible minimum. Based on such a model it is shown that traversable wormholes in the outer regions of spiral galaxies are possible while the inner part regions prohibit such formations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing Dover, New York (1972)

    Google Scholar 

  2. Bernal, N., Palomares-Ruiz, S.: J. Cosmol. Astropart. Phys., 01, 006 (2012)

    ADS  Article  Google Scholar 

  3. Bozorgnia, N., et al.: J. Cosmol. Astropart. Phys. 1312, 050 (2013)

    ADS  Article  Google Scholar 

  4. Castignani, G., Frusciante, N., Vernieri, D., Salucci, P.: Nat. Sci. 4, 265 (2012)

    Google Scholar 

  5. Chandrasekhar, S.: Mathematical Theory of Black Holes (Oxford Classic Texts) (1983)

    Google Scholar 

  6. Chan, T.K., et al.: Mon. Not. R. Astron. Soc. 454(3), 2981–3001 (2015)

    ADS  Article  Google Scholar 

  7. Cui, Y.: Mod. Phys. Lett. A 30(37), 1530028 (2015)

    ADS  Article  Google Scholar 

  8. Cline, D.B.: Phys. Scr. 91(3), 033008 (2016)

    ADS  Article  Google Scholar 

  9. Dhar, B.K., Williams, L.L.R.: Mon. Not. R. Astron. Soc. 405(1), 340 (2010)

    ADS  Google Scholar 

  10. Dutton, A.A., Maccio, A.V.: Mon. Not. R. Astron. Soc. 441(4), 3359 (2014)

    ADS  Article  Google Scholar 

  11. Duffy, A.R., et al.: Mon. Not. R. Astron. Soc. 405(4), 2161–2178 (2010)

    ADS  Google Scholar 

  12. Einasto, J.: Tr. Inst. Astrofiz. Alma-Ata 5, 87 (1965)

    ADS  Google Scholar 

  13. Einasto, J., Haud, U.: Galaxy Astron. Astrophys. 223, 89 (1989)

    ADS  Google Scholar 

  14. Einstein, A., Rosen, N.: Phys. Rev. 48, 73–77 (1935)

    ADS  Article  Google Scholar 

  15. Evans, N.W., Williams, A.A.: Mon. Not. R. Astron. Soc. 443(1) 791 (2014)

    ADS  Article  Google Scholar 

  16. Fan, J., Katz, A., Randall, L., Reece, M., Williams, A.A.: Phys. Dark Universe 2, 139–156 (2013a)

    ADS  Article  Google Scholar 

  17. Fan, J., Katz, A., Randall, L., Reece, M.: Phys. Rev. Lett. 110(21), 211302 (2013b)

    ADS  Article  Google Scholar 

  18. Flamm, L.: Phys. Z. 17, 448 (1916)

    Google Scholar 

  19. Foot, R., Vagnozzi, S.: Phys. Rev. D 91, 023512 (2015)

    ADS  Article  Google Scholar 

  20. Garrett, K., Duda, G., Williams, A.A.: Adv. Astron. 2011, 968283 (2011)

    ADS  Article  Google Scholar 

  21. Gaskins, J.M.: (2016). arXiv:1604.00014

  22. Halilsoy, M., Ovgun, A., Mazharimousavi, S.H.: Eur. Phys. J. C,74, 2796 (2014)

    ADS  Article  Google Scholar 

  23. Hjorth, J., Williams, L.L.R., Wojtak, R., McLaughlin, M.: (2015). arXiv:1508.02195

  24. Iocco, F., Pato, M., Bertone, G.: Nat. Phys. 11, 245 (2015)

    Article  Google Scholar 

  25. Jeffreys, H., Jeffreys, B.S.: The exponential and related integrals. In: Methods of Mathematical Physics, 3rd edn., pp. 470–472. Cambridge University Press, Cambridge (1988). §15.09

    Google Scholar 

  26. Kirillov, A.A., Savelova, E.P.: (2015). arXiv:1512.01450

  27. Kuhfittig, P.K.F.: Eur. Phys. J. C 74, 2818 (2014a)

    ADS  Article  Google Scholar 

  28. Kuhfittig, P.K.F.: Found. Phys. 7, 111–119 (2014b)

    Google Scholar 

  29. Kuhfittig, P.K.F.: Int. J. Mod. Phys. D 24(03), 1550023 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  30. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Pergamon, Oxford (1975)

    Google Scholar 

  31. Lovell, M.R., Frenk, C.S., et al.: Mon. Not. R. Astron. Soc. 439(1), 300 (2014)

    ADS  Article  Google Scholar 

  32. Maccio, A.V., et al.: Astrophys. J. Lett. 744, L9 (2012)

    ADS  Article  Google Scholar 

  33. Mazharimousavi, S.H., Halilsoy, M.: Eur. Phys. J. C 75(6), 271 (2015a)

    ADS  Article  Google Scholar 

  34. Mazharimousavi, S.H., Halilsoy, M.: Eur. Phys. J. C 75(2), 81 (2015b)

    ADS  MathSciNet  Article  Google Scholar 

  35. Merritt, D., Graham, A., et al.: Astron. J. 132, 6 (2006). 2685

    Article  Google Scholar 

  36. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  37. Morris, M.S., Thorne, K.S., Yurtsever, U.: Phys. Rev. Lett. 61, 1446–1449 (1988)

    ADS  Article  Google Scholar 

  38. Myrzakulov, R., Sebastiani, L., Vagnozzi, S., Zerbini, S.: (2015). arXiv:1510.02284

  39. Nandi, K.K., Filippov, A.I., Rahaman, F., et al.: Mon. Not. R. Astron. Soc., 399, 2079 (2009)

    ADS  Article  Google Scholar 

  40. Narikawa, T., Yamamoto, K.: J. Cosmol. Astropart. Phys. 05, 016 (2012)

    ADS  Article  Google Scholar 

  41. Navarro, J.F., Frenk, C.S., White, S.D.M.: Astrophys. J. 462, 563 (1996)

    ADS  Article  Google Scholar 

  42. Nesti, F., Salucci, P.: Mon. Not. R. Astron. Soc. 7, 16 (2013)

    Google Scholar 

  43. Ovgun, A., Sakalli, I.: (2015). arXiv:1507.03949

  44. Pato, M., Iocco, F.: Astrophys. J. 803, L3 (2015)

    ADS  Article  Google Scholar 

  45. Pato, M., Iocco, F., Bertone, G.: J. Cosmol. Astropart. Phys. 1512(12), 001 (2015)

    ADS  Article  Google Scholar 

  46. Ade, P.A.R., et al. (Planck Collaboration): Astron. Astrophys. 571, A20 (2014)

    Article  Google Scholar 

  47. Poisson, E., Visser, M.: Phys. Rev. D 52, 7318–7321 (1955)

    ADS  MathSciNet  Article  Google Scholar 

  48. Rahaman, F., Kalam, M., De Benedictis, A., Usmani, A.A., Ray, S.: Mon. Not. R. Astron. Soc. 27, 389 (2008)

    Google Scholar 

  49. Rahaman, F., Kuhfittig, P.K.F., Ray, S., Islam, N.: Eur. Phys. J. C 74, 2750 (2014a)

    ADS  Article  Google Scholar 

  50. Rahaman, F., Salucci, P., Kuhfittig, P.K.F., Ray, S., Rahaman, M.: Ann. Phys. 350, 561–567 (2014b)

    ADS  MathSciNet  Article  Google Scholar 

  51. Rahaman, F., Shit, G.C., Sen, B., Ray, S.: Astrophys. Space Sci. 361(1), 37 (2016a)

    ADS  Article  Google Scholar 

  52. Rahaman, F., Sen, B., Chakraborty, K., Shit, G.C.: Astrophys. Space Sci. 361(3), 90 (2016b)

    ADS  Article  Google Scholar 

  53. Retana-Montenegro, E., et al.: Astron. Astrophys. 540, A70 (2012)

    ADS  Article  Google Scholar 

  54. Rocha, M., et al.: Mon. Not. R. Astron. Soc. 430(1), 81–104 (2013)

    ADS  Article  Google Scholar 

  55. Salvador-Sole, E., Vinas, J., Manrique, A., Serra, S.: Mon. Not. R. Astron. Soc. 423(3), 2190 (2012)

    ADS  Article  Google Scholar 

  56. Siutsou, I., Arguelles, C.R., Ruffini, R.: Astron. Rep. 59(7), 656 (2015)

    ADS  Article  Google Scholar 

  57. Umetsu, K., Zitrin, A., et al.: (2016). arXiv:1507.04385

  58. Wheeler, J.: Phys. Rev. 97, 511–536 (1955)

    ADS  MathSciNet  Article  Google Scholar 

  59. Vera, R.C., Kent, F.W.: Astrophys. J. 159, 379 (1970)

    Article  Google Scholar 

  60. Vera-Ciro, C.A., Helmi, A., Starkenburg, E., Breddels, M.A.: Mon. Not. R. Astron. Soc. 428(2), 1696 (2013)

    ADS  Article  Google Scholar 

  61. Visser, M.: Phys. Rev. D 39, 3182–3184 (1989a)

    ADS  MathSciNet  Article  Google Scholar 

  62. Visser, M.: Nucl. Phys. B 328, 203–212 (1989b)

    ADS  MathSciNet  Article  Google Scholar 

  63. Visser, M., Kar, S., Dadhich, N.: Phys. Rev. Lett. 90, 201102 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  64. Vogelsberger, M., Zavala, J., Loeb, A.: Mon. Not. R. Astron. Soc. 423(4), 3740–3752 (2012)

    ADS  Article  Google Scholar 

  65. Zwicky, F.: Helv. Phys. Acta 6, 110–127 (1933)

    ADS  Google Scholar 

Download references

Acknowledgement

We would like to thank the anonymous reviewers for their useful comments and suggestions which helped us to improve the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Övgün.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Övgün, A., Halilsoy, M. Existence of traversable wormholes in the spherical stellar systems. Astrophys Space Sci 361, 214 (2016). https://doi.org/10.1007/s10509-016-2803-3

Download citation

Keywords

  • Wormholes
  • Milky Way
  • Spherical stellar systems
  • Galaxies
  • Halos
  • Dark matter