Variation ranges of motion parameters for space debris in the geosynchronous ring

  • Chang-Yin Zhao
  • Ming-Jiang Zhang
  • Sheng-Xian Yu
  • Jian-Ning Xiong
  • Wei Zhang
  • Ting-Lei Zhu
Original Article

Abstract

We propose a method that uses only one set of known orbital elements to directly determine the motion state and variation ranges of motion parameters, including the inclination, right ascension of the ascending node (RAAN), evolution period of the orbital plane, maximum libration amplitude of the semi-major axis, commensurable angle, libration period and drift period, for space debris in the geosynchronous ring. These variation ranges of motion parameters characterize the evolution of debris quantitatively and illustrate the three-dimensional (3D) variations. Employing the proposed method, we study the motion state and variation ranges of motion parameters for catalogued and uncontrolled space debris with existing two-line element (TLE) data in the geosynchronous ring, and present specific results. We also compare our results with actual observational results derived from long-term TLE historical data, and find that, in the vast majority of cases, our proposed method of determining the motion state and variation ranges of motion parameters via only one set of known orbital elements is effective. In addition, before the elaboration of the variation ranges of motion parameters stated above, we obtain the statistical distribution of space debris in the orbital plane and the daily motion from the TLE historical data. We then derive two mathematical formulae that explain the statistical distribution and daily motion on the basis of the essence of dynamics, which contributes to the characterization of the evolution of debris.

Keywords

Space debris Geosynchronous ring Motion parameter Variation range 

References

  1. Allan, R.R.: Perturbations of a geostationary satellite by the longitude-dependent terms in the Earth’s gravitational field. Planet. Space Sci. 11, 1325–1334 (1963) ADSCrossRefGoogle Scholar
  2. Allan, R.R., Cook, G.E.: The long-period motion of the plane of a distant circular orbit. Proc. R. Soc. Lond. A 280, 97–109 (1964) ADSCrossRefMATHGoogle Scholar
  3. Anderson, P.V., Schaub, H.: Local orbital debris flux study in the geostationary ring. Adv. Space Res. 51, 2195–2206 (2013) ADSCrossRefGoogle Scholar
  4. Anderson, P.V., McKnight, D.S., Pentino, F.D., Schaub, H.: Operational considerations of GEO debris synchronization dynamics. In: 66th International Astronautical Congress, IAC-15,A6,7,3,x27478, Jerusalern, Israel, pp. 12–16 (2015) Google Scholar
  5. Blitzer, L., Boughton, E.M., Kang, G., Page, R.M.: Effect of ellipticity of the equator on 24-hour nearly circular satellite orbits. J. Geophys. Res. 67, 329–335 (1962) ADSCrossRefGoogle Scholar
  6. Capelle, K.S., Sharma, J.: Geosynchronous satellite orbit pattern: improvements to SBV geosynchronous search. In: Proceedings of the 2000 Space Control Conference, pp. 29–42. MIT Lincoln Laboratory, Lexington (2000) Google Scholar
  7. Chao, C.C.: Applied Orbit Perturbation and Maintenance. The Aerospace Press, El Segundo (2005). American Institute of Aeronautics and Astronautics CrossRefGoogle Scholar
  8. Chobotov, V.A.: Orbital Mechanics. American Institute of Aeronautics and Astronautics, Reston (2002) MATHGoogle Scholar
  9. Flohrer, T.: Classification of geosynchronous objects issue 15. In: ESOC (2013) Google Scholar
  10. Flohrer, T.: Classification of geosynchronous objects issue 17. In: ESOC (2015) Google Scholar
  11. Flohrer, T., Choc, R., Bastida, B.: Classification of geosynchronous objects issue 13. In: ESOC (2011) Google Scholar
  12. Garfinkel, B.: Formal solution in the problem of small divisors. Astron. J. 71, 657–669 (1966) ADSMathSciNetCrossRefGoogle Scholar
  13. Hernández, C., Jehn, R.: Classification of geostationary objects. Space Debris 1, 235–337 (2001) CrossRefGoogle Scholar
  14. Hoots, F.R., Roehrich, R.L.: Models for propagation of NORAD element sets. Aerospace Defense Command, United States Air Force, December (1980) Google Scholar
  15. Inter-Agency Space Debris Coordination Committee: IADC Space Debris Mitigation Guidelines, IADC-02-01 (2002), revised (2007) Google Scholar
  16. Krisko, P.H., Hall, D.T.: Geosynchronous region orbital debris modeling with GEO-EVOLVE 2.0. Adv. Space Res. 34, 1166–1170 (2004) ADSCrossRefGoogle Scholar
  17. Samson, P.: Classification of geostationary objects User Guide. In: ESOC (1999) Google Scholar
  18. Schildknecht, T.: Optical surveys for space debris. Astron. Astrophys. Rev. 14, 41–111 (2007) ADSCrossRefGoogle Scholar
  19. Schildknecht, T., Musci, R., Ploner, M., Beutler, G., Flury, W., Kuusela, J., de Leon Cruz, J., de Fatima Dominguez Palmero, L.: Optical observations of space debris in GEO and in highly-eccentric orbits. Adv. Space Res. 34, 901–911 (2004) ADSCrossRefGoogle Scholar
  20. Schildknecht, T., Flohrer, T., Musci, R., Jehn, R.: Statistical analysis of the ESA optical space debris surveys. Acta Astron. 63, 119–127 (2008) CrossRefGoogle Scholar
  21. Valk, S., Lemaître, A., Deleflie, F.: Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence. Adv. Space Res. 43, 1070–1082 (2009) ADSCrossRefGoogle Scholar
  22. Zhao, C.Y., Zhang, M.J., Wang, H.B., Zhang, W., Xiong, J.N.: Two-dimensional phase plane structure and the stability of the motion for space debris in the geosynchronous ring. Adv. Space Res. 52, 677–684 (2013) ADSCrossRefGoogle Scholar
  23. Zhao, C.Y., Zhang, M.J., Wang, H.B., Xiong, J.N., Zhu, T.L., Zhang, W.: Analysis on the long-term dynamical evolution of the inclined geosynchronous orbits in the Chinese BeiDou navigation system. Adv. Space Res. 56, 377–387 (2015) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Chang-Yin Zhao
    • 1
    • 2
  • Ming-Jiang Zhang
    • 1
    • 2
  • Sheng-Xian Yu
    • 1
    • 2
  • Jian-Ning Xiong
    • 1
    • 2
  • Wei Zhang
    • 1
    • 2
  • Ting-Lei Zhu
    • 1
    • 2
  1. 1.Purple Mountain ObservatoryChinese Academy of SciencesNanjingChina
  2. 2.Key Laboratory of Space Object and Debris Observation, PMOCASNanjingChina

Personalised recommendations