Abstract
First we consider classical Reissner-Nordström black hole (CRNBH) metric which is obtained by solving Einstein-Maxwell metric equation for a point electric charge \(e\) inside of a spherical static body with mass \(M\). It has 2 interior and exterior horizons. Using Bekenstein-Hawking entropy theorem we calculate interior and exterior entropy, temperature, Gibbs free energy and heat capacity at constant electric charge. We calculate first derivative of the Gibbs free energy with respect to temperature which become a singular function having a singularity at critical point \(M_{c}=\frac{2|e|}{\sqrt{3}}\) with corresponding temperature \(T_{c}=\frac{1}{24\pi\sqrt{3}|e|}\). Hence we claim first order phase transition is happened there. Temperature same as Gibbs free energy takes absolutely positive (negative) values on the exterior (interior) horizon. The Gibbs free energy takes two different positive values synchronously for \(0< T< T_{c}\) but not for negative values which means the system is made from two subsystem. For negative temperatures entropy reaches to zero value at \(T\to-\infty\) and so takes Bose-Einstein condensation single state. Entropy increases monotonically in case \(0< T< T_{c}\). Regarding results of the work presented at Wang and Huang (Phys. Rev. D 63:124014, 2001) we calculate again the mentioned thermodynamical variables for remnant stable final state of evaporating quantum Reissner-Nordström black hole (QRNBH) and obtained results same as one in case of the CRNBH. Finally, we solve mass loss equation of QRNBH against advance Eddington-Finkelstein time coordinate and derive luminosity function. We obtain switching off of QRNBH evaporation before than the mass completely vanishes. It reaches to a could Lukewarm type of RN black hole which its final remnant mass is \(m_{final}=|e|\) in geometrical units. Its temperature and luminosity vanish but not in Schwarzschild case of evaporation. Our calculations can be take some acceptable statements about information loss paradox (ILP).
This is a preview of subscription content, access via your institution.











References
Almheiri, A., Marolf, D., Polchinski, J., Sully, J.: Black holes: complementarity or firewalls? J. High Energy Phys. 1302, 062 (2013). 1207.3123 [hep-th]
Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)
Bekenstein, J.D.: Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 9, 3292 (1974)
Braun, S., Ronzheimer, J.P., Schreiber, M., Hodgman, S.S., Bloch, T.R.I., Schneider, U.: Negative absolute temperature for motional degrees of freedom. Science 339, 52 (2013). arXiv:1211.0545v1
Carlip, S.: Black hole thermodynamics (2015). 1410.1486v2 [gr-qc]
Carr, L.D.: Negative temperatures? Science 339, 6115(42) (2013)
Cembranos, J.A.R., de la Curz-Dombriz, A., Jimeno Romero, P.: Kerr-Newman black holes in f(R) theories (2011). 1109.4519 [gr-qc]
Chevalier, C., Bustamante, M., Debbasch, F.: Thermal statistical ensembles of black holes. Physica A 376, 293 (2007)
Clayton, M.A., Moffat, J.W.: Dynamical mechanism for varying light velocity as a solution to cosmological problems. Phys. Lett. B 460, 263 (1999)
Davis, P.C.W.: The thermodynamic theory of black holes. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 353, 499 (1977)
Dicke, R.: Gravitation without a principle of equivalence. Rev. Mod. Phys. 29, 363 (1957)
Einstein, A.: Jahrbuch für Radioaktivität und Elektronik, vol. 4, pp. 411–462 (1907)
Gamal, G., Nashed, L.: Kerr-NUT black hole thermodynamics in f(T) gravity theories. Eur. Phys. J. Plus 130, 124 (2015)
Ghaffarnejad, H.: Quantum field backreaction corrections and remnant stable evaporating Schwarzschild-de Sitter dynamical black hole. Phys. Rev. D 75, 084009 (2007)
Ghaffarnejad, H.: Reissner-Nordström black hole thermodynamics and second order phase transition (2013). 1308.1323v1 [Physics.gen-ph]
Ghaffarnejad, H., Neyad, H., Mojahedi, M.A.: Evaporating quantum Lukewarm black holes final state from back-reaction corrections of quantum scalar fields. Astrophys. Space Sci. 346, 497 (2013)
Gonzalez-Diaz, P.F.: Dark energy and supermassive black holes. Phys. Rev. D 70, 063530 (2004). astro-ph/0408450
Hawking, S.W.: Black hole explosions? Nature 248, 30 (1974)
Hawking, S.W., Hartle, J.B.: Energy and angular momentum flow into a black hole. Commun. Math. Phys. 27, 283 (1972)
Hawking, S.W., Laflamme, R.: Phys. Lett. B 209, 39 (1988)
Huang, K.: Introduction to Statistical Physics. Taylor and Francis, London (2001)
Isham, C.J., Penrose, R., Sciama, W.D. (eds.): Quantum Gravity: Oxford Second Symposium. Oxford University Press, Oxford (1981)
Lousto, C.: The fourth law of black hole thermodynamics. Nucl. Phys. B 410, 155 (1993). Erratum: Ibid. 446, 433 (1995)
Lousto, C.: Some thermodynamic aspects of black holes and singularities. Int. J. Mod. Phys. D 6, 575 (1997). gr-qc/9601006
Meitei, I.A., Singh, K.Y., Singh, T.I., Ibohal, N.: Phase transition in the Reissner-Nordstrom black hole. Astrophys. Space Sci. 327, 67 (2010)
Melchiorri, A., Mersini, L., Ödman, C.J., Trodden, M.: The state of the dark energy equation of state (2003). astro-ph/0211522v3
Mosk, A.P.: Atomic gases at negative kinetic temperature. Phys. Rev. Lett. 95, 040403 (2005). cond-mat/0501344v4
Papantonopoulos, E. (ed.): Physics of Black Holes: A Guided Tour. Lect. Notes Phys., vol. 769. Springer, Berlin (2009). doi:10.1007/976-3-54088460-9
Parentani, R., Piran, T.: Internal geometry of an evaporating black hole. Phys. Rev. Lett. 73, 2805 (1994)
Pathria, R.K.: Statistical Mechanics. Pergamon Press, Elmsford (1972)
Reichl, L.E.: A Modern Course in Statistical Physics. Edward Arnold Publisher (LTD), London (1987)
Sciama, D.W., Candelas, P., Deutsch, D.: Quantum field theory, horizons and thermodynamics. Adv. Phys. 30, 327 (1981)
Serra, A.L., Romero, M.J.L.D.: Measuring the dark matter equation of state. Mon. Not. R. Astron. Soc. 415, L74–L75 (2011). 1103.5465v2 [gr-qc]
Sokolowski, L.M., Mazur, P.: Second-order phase transitions in black-hole thermodynamics. J. Phys. A, Math. Gen. 13, 1113 (1980)
Valeri, P., Novikov, I.D.: Physics of Black Holes: Basic Concepts and New Developments. Kluwer Academic Publishers, Norwell (1998)
Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)
Wald, R.M.: In: black Hole Physics, Erice Lectures 1991. NATO ASI Series. Kluwer Academic Publishers, Dordrecht (1992)
Wang, B., Huang, C.-G.: Back reaction on a Reissner-Nordström black hole. Phys. Rev. D 63, 124014 (2001)
York, J.W. Jr.: Black hole in thermal equilibrium with a scalar field: the backreaction. Phys. Rev. D 31, 775 (1985)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ghaffarnejad, H. Classical and quantum Reissner-Nordström black hole thermodynamics and first order phase transition. Astrophys Space Sci 361, 7 (2016). https://doi.org/10.1007/s10509-015-2605-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-015-2605-z
Keywords
- Reissner-Nordström black holes
- Negative temperatures
- Heat capacity
- Phase transition
- Dark matter
- Gibbs free energy
- Liquid helium
- Bose-Einstein condensation
- Quantum fields
- Backreaction
- Luminosity
- Mass loss
- Information loss paradox