New insights from modeling the neutral heliospheric current sheet

  • J. L. RaathEmail author
  • R. D. Strauss
  • M. S. Potgieter
Original Article


Recently, the modulation of cosmic rays in the heliosphere has increasingly been studied by solving the well known transport equation via an approach based on stochastic differential equations. This approach, which is now well-established and published, allows for an in depth study of the modulation effects of the wavy heliospheric current sheet, in particular as its waviness increases with solar activity up to extreme maximum conditions. This is possible because of the numerical stability of the approach as well as its ability to trace pseudo-particles so that insightful trajectories of how they respond to the wavy heliospheric current sheet can be computed and displayed. Utilising such a stochastic model, we present valuable new insights into how the geometry of the wavy current sheet can affect the modulation of cosmic rays, especially at the highest levels of solar activity. This enables us to show, from a modeling perspective, why a certain choice for the current sheet profile is more suited than another at these high solar activity levels. We emphasise the importance of an effective tilt angle and illustrate how this concept can be employed effectively in interpreting results pertaining to the wavy current sheet as well as the modulation associated with this important heliospheric structure.


Cosmic rays Current sheet Heliosphere Drifts Stochastic differential equations 



M.S. Potgieter expresses his gratitude for the partial funding granted by the South African National Research Foundation (NRF) under the Incentive and Competitive Grants for Rated Researchers. R.D. Strauss thanks the NRF for financial support under Thuthuka Programme, grant number 87998. J.L. Raath thanks the NRF and the South African Space Agency (SANSA) for partial financial support during his post-graduate study. J.L. Raath also thanks Dr. Andreas Kopp for discussions related to this research.


  1. Alanko-Huotari, K., Usoskin, I.G., Mursula, K., Kovaltsov, G.A.: Stochastic simulation of cosmic ray modulation including a wavy heliospheric current sheet. J. Geophys. Res. 112, 1–10 (2007) Google Scholar
  2. Bobik, P., et al.: Systematic investigation of solar modulation of galactic protons for solar cycle 23 using a Monte Carlo approach with particle drift effects and latitudinal dependence. Astrophys. J. 754, 986–996 (2012) Google Scholar
  3. Burger, R.A., Potgieter, M.S.: The calculation of neutral sheet drift in two-dimensional cosmic-ray modulation models. Astrophys. J. 339, 501–511 (1989) CrossRefADSGoogle Scholar
  4. Burger, R.A., Moraal, H., Webb, G.M.: Drift theory of charged particles in electric and magnetic fields. Astrophys. Space Sci. 116, 107–129 (1985) CrossRefADSMathSciNetGoogle Scholar
  5. Burger, R.A., Potgieter, M.S., Heber, B.: Rigidity dependence of cosmic ray proton latitudinal gradients measured by the Ulysses spacecraft: implications for the diffusion tensor. J. Geophys. Res. 105, 27447–27456 (2000) CrossRefADSGoogle Scholar
  6. Dröge, W., Kartavykh, Y.Y., Klecker, B., Kovaltsov, G.A.: Anisotropic three-dimensional focused transport of solar energetic particles in the inner heliosphere. Astrophys. J. 709, 912–919 (2010) CrossRefADSGoogle Scholar
  7. Dunzlaff, P., Strauss, R.D., Potgieter, M.S.: Solving Parker’s transport equation with stochastic differential equations on GPUs. Comput. Phys. Commun. 192, 156–165 (2015) CrossRefADSMathSciNetGoogle Scholar
  8. Effenberger, F., Fichtner, H., Scherer, K., Barra, S., Kleiman, J., Strauss, R.D.: A generalized diffusion tensor for fully anisotropic diffusion of energetic particles in the heliospheric magnetic field. Astrophys. J. 750, 108–115 (2012) CrossRefADSGoogle Scholar
  9. Engelbrecht, N.E., Burger, R.A.: An ab initio model for cosmic-ray modulation. Astrophys. J. 772, 46–57 (2013) CrossRefADSGoogle Scholar
  10. Ferreira, S.E.S., Potgieter, M.S., Burger, R.A., Heber, B.: Modulation effects of anisotropic perpendicular diffusion on cosmic ray electron intensities in the heliosphere. J. Geophys. Res. 105, 18305–18314 (2000) CrossRefADSGoogle Scholar
  11. Ferreira, S.E.S., Potgieter, M.S., Heber, B., Fichtner, H., Wibberenz, G.: Latitudinal transport effects on the modulation of a few-MeV cosmic ray electrons from solar minimum to solar maximum. J. Geophys. Res. 109, 2115 (2004) CrossRefGoogle Scholar
  12. Fichtner, H., le Roux, J.A., Mall, U., Rucinski, D.: On the transport of pick-up ions in the heliosphere. Astron. Astrophys. 314, 650–662 (1996) ADSGoogle Scholar
  13. Hattingh, M.: The modulation of galactic cosmic rays in a three-dimensional heliosphere. Ph.D. Thesis, North-West University, South Africa (1998) Google Scholar
  14. Heber, B., Potgieter, M.S.: Cosmic rays at high heliolatitudes. Space Sci. Rev. 127, 117–194 (2006) CrossRefADSGoogle Scholar
  15. Jokipii, J.R., Kopriva, D.A.: Effects of particle drift on the transport of cosmic rays III. Numerical models of galactic cosmic ray modulation. Astrophys. J. 234, 384–392 (1979) CrossRefADSGoogle Scholar
  16. Jokipii, J.R., Thomas, B.: Effects of drift on the transport of cosmic rays. IV. Modulation by a wavy interplanetary current sheet. Astrophys. J. 243, 1115–1122 (1981) CrossRefADSGoogle Scholar
  17. Kopp, A., Büsching, I., Strauss, R.D., Potgieter, M.S.: A stochastic differential equation code for multidimensional Fokker-Planck type problems. Comput. Phys. Commun. 183, 530–542 (2012) CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. Kóta, J., Jokipii, J.R.: Effects of drifts on the transport of cosmic rays. VI. A three-dimensional model including diffusion. Astrophys. J. 265, 573–581 (1983) CrossRefADSGoogle Scholar
  19. Langner, U.W.: Effects of termination shock acceleration on cosmic rays in the heliosphere. Ph.D. Thesis, North-West University, South Africa (2004) Google Scholar
  20. Langner, U.W., Potgieter, M.S.: Solar wind termination shock and heliosheath effects on the modulation of protons and antiprotons. J. Geophys. Res. 109, 1–12 (2004) Google Scholar
  21. le Roux, J.A., Potgieter, M.S.: The simulated features of heliospheric cosmic-ray modulation with a time dependent drift model. IV. The role of heliospheric neutral sheet deformation. Astrophys. J. 397, 686–693 (1992) CrossRefADSGoogle Scholar
  22. Luo, X., Zhang, M., Rassoul, H.K., Pogorelov, N.V.: Cosmic-ray modulation by the global merged interaction region in the heliosheath. Astrophys. J. 730, 13–22 (2011) CrossRefADSGoogle Scholar
  23. Luo, X., Zhang, M., Rassoul, H.K., Pogorelov, N.V., Heerikhuisen, J.: Galactic cosmic-ray modulation in a realistic global magnetohydrodynamic heliosphere. Astrophys. J. 764, 85–100 (2013a) CrossRefADSGoogle Scholar
  24. Luo, X., Zhang, M., Feng, X., Mendoza-Torres, J.E.: Investigation of the transient cosmic ray decreases observed by voyagers in 2007: a numerical approach. J. Geophys. Res. 118, 7517–7524 (2013b) CrossRefGoogle Scholar
  25. Luo, X., Zhang, M., Potgieter, M.S., Feng, X., Pogorelov, N.V.: A numerical simulation of cosmic-ray modulation near the heliopause. Astrophys. J. 808, 82–88 (2015) CrossRefADSGoogle Scholar
  26. Ndiitwani, D.C., Ferreira, S.E.S., Potgieter, M.S., Heber, B.: Modelling cosmic ray intensities along Ulysses trajectory. Ann. Geophys. 23(3), 1061–1070 (2005) CrossRefADSGoogle Scholar
  27. Ngobeni, M.D., Potgieter, M.S.: Modulation of galactic cosmic rays in a north-south asymmetrical heliosphere. Adv. Space Res. 48(2), 300–307 (2011) CrossRefADSGoogle Scholar
  28. Ngobeni, M.D., Potgieter, M.S.: Modelling the effects of scattering parameters on particle-drift in the solar modulation of galactic cosmic rays. Adv. Space Res. 56, 1525–1537 (2015) CrossRefADSGoogle Scholar
  29. Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958) CrossRefADSGoogle Scholar
  30. Parker, E.N.: The passage of energetic charged particles through interplanetary space. Planet. Space Sci. 13, 9 (1965) CrossRefADSGoogle Scholar
  31. Phillips, J.L., et al.: Ulysses solar wind plasma observations from pole to pole. Geophys. Res. Lett. 22, 3301–3304 (1995) CrossRefADSGoogle Scholar
  32. Pogorelov, N.V., Stone, E.C., Florinski, V., Zank, G.P.: Termination shock asymmetries as seen by the Voyager spacecraft: the role of the interstellar magnetic field and neutral hydrogen. Astrophys. J. 668, 611–624 (2007) CrossRefADSGoogle Scholar
  33. Potgieter, M.S.: Heliospheric modulation of galactic electrons: consequences of new calculations for the mean free path of electrons between 1 MeV and \(\sim10~\mbox{GeV}\). J. Geophys. Res. 101, 24411–24422 (1996) CrossRefADSGoogle Scholar
  34. Potgieter, M.S.: Heliospheric modulation of cosmic ray protons: role of enhanced perpendicular diffusion during periods of minimum solar modulation. J. Geophys. Res. 105, 18295–18304 (2000) CrossRefADSGoogle Scholar
  35. Potgieter, M.S.: Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10(3), 1–66 (2013) ADSMathSciNetGoogle Scholar
  36. Potgieter, M.S.: Very local interstellar spectra for galactic electrons, protons and helium. Braz. J. Phys. 44, 581–588 (2014) CrossRefADSGoogle Scholar
  37. Potgieter, M.S., Moraal, H.: A drift model for the modulation of galactic cosmic rays. Astrophys. J. 294, 425–440 (1985) CrossRefADSGoogle Scholar
  38. Potgieter, M.S., Haasbroek, L.J.: The simulation of base-line cosmic-ray modulation for the Ulysses trajectory. In: Int. Cosmic Ray Conf. Proc., vol. 3, pp. 457–460 (1993) Google Scholar
  39. Potgieter, M.S., le Roux, J.A., Burger, R.A.: Interplanetary cosmic ray radial gradients with steady state modulation models. J. Geophys. Res. 94, 2323–2332 (1989) CrossRefADSGoogle Scholar
  40. Potgieter, M.S., Nndanganeni, R.R., Vos, E.E., Boezio, M.: A heliopause spectrum for electrons. icrc2013-0070 (2013) Google Scholar
  41. Potgieter, M.S., Vos, E.E., Boezio, M., De Simone, N., Di Felice, V., Formato, V.: Modulation of galactic protons during the unusual solar minimum of 2006 to 2009. Sol. Phys. 289, 391–406 (2014) CrossRefADSGoogle Scholar
  42. Raath, J.L., Potgieter, M.S., Strauss, R.D., Kopp, A.: The effect of magnetic field modifications on the modulation of cosmic rays in the heliosphere. Adv. Space Res. (2015, submitted). arXiv:1506.07305
  43. Smith, C.W., Bieber, J.W.: Solar cycle variation of the interplanetary magnetic field spiral. Astrophys. J. 370, 435–441 (1991) CrossRefADSGoogle Scholar
  44. Strauss, R.D., Potgieter, M.S., Büsching, I., Kopp, A.: Modeling the modulation of galactic and Jovian electrons by stochastic processes. Astrophys. J. 735(83), 1–13 (2011a) Google Scholar
  45. Strauss, R.D., Potgieter, M.S., Kopp, A., Büsching, I.: On the propagation times and energy losses of cosmic rays in the heliosphere. J. Geophys. Res. 116, 1–13 (2011b) Google Scholar
  46. Strauss, R.D., Potgieter, M.S., Büsching, I., Kopp, A.: Modeling heliospheric current sheet drift in stochastic cosmic ray transport models. Astrophys. Space Sci. 339, 223–236 (2012) CrossRefADSGoogle Scholar
  47. Strauss, R.D., Potgieter, M.S., Ferreira, S.E.S., Fichtner, H., Scherer, K.: Cosmic ray modulation beyond the heliopause: a hybrid modeling approach. Astrophys. J. Lett. 765, L18 (2013) CrossRefADSGoogle Scholar
  48. Zhang, M.: A Markov stochastic process theory of cosmic-ray modulation. Astrophys. J. 513, 409–420 (1999) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • J. L. Raath
    • 1
    Email author
  • R. D. Strauss
    • 1
  • M. S. Potgieter
    • 1
  1. 1.Centre for Space ResearchNorth-West UniversityPotchefstroomSouth Africa

Personalised recommendations