Skip to main content
Log in

Study of nonlinear 3-D evolution of kinetic Alfvén wave and fluctuation spectra

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Waves and instabilities play a very crucial role in astrophysical plasmas e.g. solar wind, Geospace etc. The main objective of current study is to investigate the importance of nonlinear processes associated with kinetic Alfvén waves (KAWs) in order to understand the physical mechanism behind the magnetopause turbulence. Numerical simulation of the coupled equations guiding the dynamics of three dimensionally propagating kinetic Alfvén wave (KAW) and slow magnetosonic wave has been performed for intermediate beta plasma (i.e. \(m_{e}/m_{i} \ll \beta < 1\), where \(\beta\) is thermal to magnetic pressure ratio) applicable to the magnetopause. A simplified semi-analytical model based on paraxial approach has also been developed. We have examined the field localization and associated power spectrum of 3-D kinetic Alfvén wave for this nonlinear interaction. Governing dynamical equations of KAW and slow magnetosonic wave get coupled when the ponderomotive force arising due to pump KAW is taken into account while studying the slow magnetosonic wave dynamics. The numerical prediction of power law scaling is just consistent with the observation of THEMIS spacecraft in the magnetopause.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhmanov, S.A., Sukhorukov, A.P., Khokhlov, R.V.: Self focusing and diffraction of light in a nonlinear medium. Sov. Phys. Usp. 10, 609 (1968)

    Article  ADS  Google Scholar 

  • Alfvén, H.: Nature (London) 150, 405 (1942)

    Article  ADS  Google Scholar 

  • Anderson, R.R., Harvey, C.C., Hoppe, M.M., Tsurutani, B.T., Eastman, T.E., Etcheto, J.: Plasma waves near the magnetopause. J. Geophys. Res. 87, 2087 (1982)

    Article  ADS  Google Scholar 

  • Brodin, G., Stenflo, L.: Coupling coefficients for ion-cyclotron Alfvén waves. Contrib. Plasma Phys. 30, 413–419 (1990)

    Article  ADS  Google Scholar 

  • Chaston, C.C., Bonnell, J.W., Carlson, C.W., McFadden, J.P., Ergun, R.E., Strangeway, R.J.: Properties of small-scale Alfvén waves and accelerated electrons from FAST. J. Geophys. Res. 108, A48003 (2003)

    ADS  Google Scholar 

  • Chaston, C., et al.: Turbulent heating and cross-field transport near the magnetopause from THEMIS. Geophys. Res. Lett. 35, L17S08 (2008)

    Google Scholar 

  • Cramer, N.F.: The Physics of Alfvén Waves. Wiley-VCH, Berlin (2001)

    Book  Google Scholar 

  • Dastgeer, S., Shukla, P.K.: 3D simulations of fluctuation spectra in the Hall-MHD plasma. Phys. Rev. Lett. 102, 045004 (2009)

    Article  Google Scholar 

  • Drake, J.F., Gerber, J., Kleva, R.G.: Turbulence and transport in the magnetopause current layer. J. Geophys. Res. 99, 11211 (1994)

    Article  ADS  Google Scholar 

  • Goertz, C.K., Boswell, R.W.: Magnetosphere-ionosphere coupling. J. Geophys. Res. 84(A12), 7239–7246 (1979)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Anderson, R.R., Tsurutani, B.T., Smith, E.J., Paschmann, G., Haerendel, G., Bame, S.J., Russull, C.T.: Plasma wave turbulence at the magnetopause: observations from ISEE 1 and 2. J. Geophys. Res. 84, 7043 (1979)

    Article  ADS  Google Scholar 

  • Hasegawa, A.: Particle acceleration by MHD surface wave and formation of aurora. J. Geophys. Res. 81, 5083 (1976)

    Article  ADS  Google Scholar 

  • Hasegawa, A., Mima, K.: Anomalous transport produced by kinetic Alfvén wave turbulence. J. Geophys. Res. 83, 1117–1123 (1978)

    Article  ADS  Google Scholar 

  • Hollweg, J.V.: Kinetic Alfvén wave revisited. J. Geophys. Res. 104(A7), 14,811–14,819 (1999)

    Article  ADS  Google Scholar 

  • Johnson, J.R., Cheng, C.Z.: Kinetic Alfvén waves and plasma transport at the magnetopause. Geophys. Res. Lett. 24, 1423 (1997)

    Article  ADS  Google Scholar 

  • Kruer, W.: The Physics of Laser Plasma Interactions. Westview Press, Boulder (2003)

    Google Scholar 

  • Lee, L.C., Johnson, J.R., Ma, Z.W.: Kinetic Alfvén waves as a source of plasma transport at the dayside magnetopause. J. Geophys. Res. 99, 17405 (1994)

    Article  ADS  Google Scholar 

  • Louarn, P., Wahlund, J.E., Chust, T., de Feraudy, H., Roux, A., Holback, B., Dovner, P.O., Eriksson, A.I., Holmgren, G.: Observation of kinetic Alfvén waves by the FREJA spacecraft. Geophys. Res. Lett. 21, 1847 (1994)

    Article  ADS  Google Scholar 

  • Ohtani, S., Miura, A., Tamao, T.: Coupling between Alfvén and slow magnetosonic waves in an inhomogeneous finite-beta plasma, I: coupled equations and physical mechanism. Planet. Space Sci. 37, 567–577 (1989)

    Article  ADS  Google Scholar 

  • Ofman, L., Nakariakov, V.M., Sehgal, N.: Dissipation of slow magnetosonic waves in coronal plumes. Astrophys. J. 533, 1071 (2000)

    Article  ADS  Google Scholar 

  • Perri, S., Zimbardo, G., Greco, A.: On the energization of protons interacting with 3-D time-dependent electromagnetic fields in the earth’s magnetotail. J. Geophys. Res. 116, A05221 (2011)

    ADS  Google Scholar 

  • Rezeau, L., Belmont, G.: Magnetic turbulence at the magnetopause, a key problem for understanding the solar wind/magnetosphere exchanges. Space Sci. Rev. 95, 427–441 (2001)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Bingham, R., McKenzie, J.F., Axford, W.I.: Solar coronal heating by high-frequency dispersive Alfvén waves. Sol. Phys. 186, 61–66 (1998)

    Article  ADS  Google Scholar 

  • Shukla, P.K., Stenflo, L., Bingham, R.: Nonlinear propagation of inertial Alfvén waves in auroral plasmas. Phys. Plasmas 6, 1677 (1999)

    Article  ADS  Google Scholar 

  • Shukla, P.K.: Alfvénic tornadoes in magnetized plasma. J. Geophys. Res. 118, 1–4 (2012)

    Article  Google Scholar 

  • Stasiewicz, K., et al.: Small scale Alfvénic structure in the aurora. Space Sci. Rev. 92, 423–533 (1999)

    Article  ADS  Google Scholar 

  • Stasiewicz, K., Shukla, P.K., Gustafsson, G., Buchert, S., Lavraud, B., Thide, B., Klos, Z.: Slow magnetosonic solitons detected by the cluster spacecraft. Phys. Rev. Lett. 90, 085002 (2003)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Smith, E.J., Thorne, R.M., Anderson, R.R., Gurnett, D.A., Parks, G.K., Lin, C.S., Russull, C.T.: Wave-particle interactions at the magnetopause: contribution to the dayside aurora. Geophys. Res. Lett. 8, 183 (1981)

    Article  ADS  Google Scholar 

  • Voitenko, Y., Goossens, M.: Cross-scale nonlinear coupling and plasma energization by Alfvén waves. Phys. Rev. Lett. 94, 135003 (2005)

    Article  ADS  Google Scholar 

  • Wahlund, J.E., Louarn, P., Chust, T., de Feraudy, H., Roux, A., Holback, B., Dovner, P.O., Holmgren, G.: On ion acoustic turbulence and the nonlinear evolution of kinetic Alfvén waves in aurora. Geophys. Res. Lett. 21, 1831 (1994)

    Article  ADS  Google Scholar 

  • Wygant, J.R., Keiling, A., Cattell, C.A., Lysak, R.L., Temerin, M., Mozer, F.S., Kletzing, C.A., Scudder, J.D., Streltsov, V., Lotko, W., Russell, C.T.: Evidence for kinetic Alfvén waves and parallel electron energization at 4–6 RE altitudes in the plasma. J. Geophys. Res. 107, A8 (2002)

    Google Scholar 

  • Yadav, N., Sharma, R.P.: Nonlinear interaction of 3D kinetic Alfvén waves and ion acoustic waves in solar wind plasmas. Sol. Phys. 289, 1809 (2014)

    Article  ADS  Google Scholar 

  • Zimbardo, G., Greco, A., Veltri, P., Voros, Z., Taktakishvili, A.L.: Magnetic turbulence in and around the earth’s magnetosphere. Astrophys. Space Sci. Trans. 4, 35–40 (2008)

    Article  ADS  Google Scholar 

  • Zimbardo, G., Greco, A., Sorriso-Valvo, L., Perri, S., Vörös, Z., Aburjania, G., Chargazia, K., Alexandrova, O.: Magnetic turbulence in the geospace environment. Space Sci. Rev. 156, 89 (2010)

    Article  ADS  Google Scholar 

  • Zhao, J.: Dispersion relations and polarizations of low-frequency waves in two-fluid plasmas. Phys. Plasmas 22, 042115 (2015)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Yu, M.Y.: Streamers generation by small-scale drift-Alfvén waves. Phys. Plasmas 21, 102302 (2014)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: On nonlinear decay of kinetic Alfvén waves and application to some processes in space plasmas. J. Geophys. Res. 115, 12227 (2010)

    Article  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: Kinetic Alfvén waves excited by oblique magnetohydrodynamic Alfvén waves in coronal holes. Astrophys. J. 735, 114 (2011a)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y., Yang, L., Yu, M.Y.: Generation of convective cells by kinetic Alfvén waves. New J. Phys. 13, 063043 (2011b)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Lu, J.Y.: A nonlocal wave-wave interaction among Alfvén waves in an intermediate-beta plasma. Phys. Plasmas 18, 032903 (2011c)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Yu, M.Y., Lu, J.Y.: Convective cell generation by kinetic Alfvén wave turbulence in the auroral ionosphere. Phys. Plasmas 19, 062901 (2012)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Wu, D.J., Yang, L., Lu, J.Y.: Nonlinear interaction and parametric instability of kinetic Alfvén waves in multicomponent plasmas. Phys. Plasmas 20, 032308 (2013)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Voitenko, Y., Yu, M.Y., Lu, J.Y., Wu, D.J.: Properties of short-wavelength oblique Alfvén and slow waves. Astrophys. J. 793, 107 (2014)

    Article  ADS  Google Scholar 

  • Zhao, J.S., Voitenko, Y., De Keyser, J., Wu, D.J.: Scalar and vector nonlinear decays of low-frequency Alfvén waves. Astrophys. J. 799, 222 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The present work has partially supported with the help of Council for Scientific and Industrial Research (CSIR), Department of Science and Technology (DST), India, and the Indian Space Research Organization (ISRO) under the RESPOND program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prachi Sharma.

Appendix A

Appendix A

Ponderomotive forces for electrons due to 3D KAW are as follows:

$$ F_{ex} = \frac{k_{0 \bot}^{2}}{16\pi n_{0}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial x} $$
(A.1)
$$ F_{ey} = \frac{k_{0 \bot}^{2}}{16\pi n_{0}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial y} + \frac{m_{e}c^{2}\alpha^{2}k_{0x}k_{0y}}{4B_{0}^{2}} \frac{\partial \vert A_{z} \vert ^{2}}{\partial x} $$
(A.2)

and

$$ F_{ez} = - \frac{m_{e}c^{2}k_{0 \bot}^{4}}{64\pi^{2}e^{2}n_{0}^{2}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial z} $$
(A.3)

Similarly for ions, ponderomotive force components are given as:

$$ \begin{aligned}[b] F_{ix} = - \frac{m_{i}P^{2}c^{2}k_{0y}^{2}\alpha^{2}}{4B_{0}^{2}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial x} + \frac{eQck_{0x}k_{0z}\alpha^{2}}{4\omega_{0}B_{0}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial z} \end{aligned} $$
(A.4)
$$ \begin{aligned}[b] F_{iy} & = \frac{m_{i}P^{2}c^{2}k_{0x}k_{0y}\alpha^{2}}{4B_{0}^{2}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial x} + \frac{e^{2}k_{0z}\alpha}{ 4m_{i}\omega_{0}c} \frac{\partial \vert A_{z} \vert ^{2}}{\partial y} \\ &\quad {}+ \frac{eQck_{0y}k_{0z}\alpha^{2}}{4\omega_{0}B_{0}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial z} \end{aligned} $$
(A.5)

and

$$ \begin{aligned}[b] F_{iz} & = \frac{eQck_{0x}k_{0z}\alpha}{4\omega_{0}B_{0}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial x} + \frac{eQck_{0y}\alpha}{ 4cB_{0}} \frac{\partial \vert A_{z} \vert ^{2}}{\partial y} \\ &\quad {}- \frac{e^{2}k_{0z}^{2}\alpha^{2}}{4m_{i}\omega_{0}^{2}}\frac{\partial \vert A_{z} \vert ^{2}}{\partial z} \end{aligned} $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Yadav, N. & Sharma, R.P. Study of nonlinear 3-D evolution of kinetic Alfvén wave and fluctuation spectra. Astrophys Space Sci 360, 18 (2015). https://doi.org/10.1007/s10509-015-2531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2531-0

Keywords

Navigation