Abstract
In this paper we present a general framework for generating exact solutions to the Einstein field equations for static, anisotropic fluid spheres in comoving, isotropic coordinates obeying a linear equation of state of the form \(p_{r} =\alpha \rho - \beta\). We show that all possible solutions can be obtained via a single generating function defined in terms of one of the gravitational potentials. The physical viability of our solution-generating method is illustrated by modeling a static fluid sphere describing a strange star.
Similar content being viewed by others
References
Bonnor, W.B., de Oliveira, A.K.G., Santos, N.O.: Phys. Rep. 181, 269 (1989)
Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974)
Buchdahl, H.A.: Phys. Rev. 116, 1027 (1959)
de Sitter, W.: Proc. R. Acad. Amst. 19, 1217 (1917)
Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 34, 1793 (2002)
Dev, K., Gleiser, M.: Gen. Relativ. Gravit. 35, 1435 (2003)
Dey, M., Bombaci, I., Dey, J., Ray, S., Samantha, B.C.: Phys. Lett. B 438, 123 (1998)
Einstein, A.: Sitz. Deut. Akad. Wiss. Math.-Phys. Berlin 8, 142 (1917)
Esculpi, M., Malaver, M., Aloma, E.: Gen. Relativ. Gravit. 39, 633 (2007)
Finch, M.R., Skea, J.E.F.: http://edradour.symbcomp.uerj.br/pubs.html (1995)
Herrera, L., Barreto, W.: Phys. Rev. D 88, 084022 (2013)
Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997)
Herrera, L., Le Denmat, G., Santos, N.O., Wang, A.: Int. J. Mod. Phys. D 13, 583 (2004)
Herrera, L., di Prisco, A., Ospino, J.: Phys. Rev. D 74, 044001 (2006)
Herrera, L., Ospino, J., Di Prisco, A.: Phys. Rev. D 77, 027502 (2008)
Herrera, L., Di Prisco, A., Ibanez, J., Ospino, J.: Phys. Rev. D 87, 024014 (2013)
Ivanov, B.V.: Gen. Relativ. Gravit. 44, 1835 (2012)
Kramer, D.: J. Math. Phys. 33, 1458 (1992)
Kustaanheimo, P., Qvist, B.: Phys. Math. Helsingf. 13, 1 (1948)
Lake, K.: Phys. Rev. D 67, 104015 (2003)
Leahy, D.A.: Astrophys. J. 613, 517 (2004)
Maharaj, S.D., Govender, M.: Aust. J. Phys. 50, 959 (1997)
Maharaj, S.D., Govender, M.: Int. J. Mod. Phys. D 667, 14 (2005)
Maharaj, S.D., Takisa, P.M.: Gen. Relativ. Gravit. 44, 1419 (2012)
Mak, M.K., Harko, T.: Pramana J. Phys. 65, 185 (2005)
Muñoz-Darias, T., Casares, J., O’Brien, K., Steeghs, D., Martínez-Pais, I.G., Cornelisse, R., Charles, P.A.: Mon. Not. R. Astron. Soc. 394, L136–L140 (2009)
Ngubelanga, S.A., Maharaj, S.D.: Adv. Math. Phys. 2013, 905168 (2013)
Ngubelanga, S.A., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 357, 74 (2015a)
Ngubelanga, S.A., Maharaj, S.D., Ray, S.: Astrophys. Space Sci. 357, 40 (2015b)
Pant, N., Pradhan, N., Mohammad, H.M.: Astrophys. Space Sci. 352, 135 (2014a)
Pant, N., Pradhan, N., Mohammad, H.M.: Int. J. Theoret. Phys. 53, 3958 (2014b)
Pant, N., Pradhan, N., Malaver, M.: Int. J. Astrophys. Space Sci. 3, 1 (2015a)
Pant, N., Pradhan, N., Mohammad, H.M.: Astrophys. Space Sci. 355, 137 (2015b)
Rawls, M.L., Orosz, J.A., McClintock, J.E., Torros, M.A.P., Bailyn, C.D., Buxton, M.M.: Astrophys. J. 730, 25 (2011)
Schwarzschild, K.: Sitz. Deut. Akad. Wiss. Math.-Phys. Berlin 24, 424 (1916)
Sharma, R., Maharaj, S.D.: Mon. Not. R. Astron. Soc. 375, 1265 (2007)
Takisa, P.M., Maharaj, S.D., Subharthi, R.: Astrophys. Space Sci. 354, 2120 (2014)
Thirukkanesh, S., Ragel, F.C.: Astrophys. Space Sci. 354, 1883 (2014)
Thirukkanesh, S., Govender, M., Lortan, D.B.: IJMP-D 24, 1550002 (2015)
Tikekar, R., Jotania, K.: Pramana J. Phys. 68, 397 (2007)
Wyman, M.: Phys. Rev. D 70, 74 (1946)
Acknowledgements
The authors are thankful to the anonymous referee for constructive suggestions which helped improve the main results of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Govender, M., Thirukkanesh, S. Anisotropic static spheres with linear equation of state in isotropic coordinates. Astrophys Space Sci 358, 39 (2015). https://doi.org/10.1007/s10509-015-2431-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10509-015-2431-3