Skip to main content
Log in

Improved SOT (Hinode mission) high resolution solar imaging observations

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing (i) the limb of the Sun and (ii) images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Adjabshirzadeh, A., Koutchmy, S.: Sol. Phys. 75, 71 (1982)

    Article  ADS  Google Scholar 

  • Adjabshirzadeh, A., Koutchmy, S.: Astron. Astrophys. 122, 1–8 (1983)

    ADS  Google Scholar 

  • Aime, C.: Astron. Astrophys. 467, 317–325 (2007)

    Article  ADS  Google Scholar 

  • Baudin, F., Molowny-Horas, R., Koutchmy, S.: Astron. Astrophys. 326, 842 (1997)

    ADS  Google Scholar 

  • Bazin, C., Koutchmy, S.: J. Adv. Res. 4(3), 307–313 (2013)

    Article  Google Scholar 

  • Bracewell, R.N.: The Fourier transform and its applications. McGraw-Hill International editions (1976)

  • DeForest, C.E., Martens, P.C.H., Wills-Davey, M.J.: Astrophys. J. 690, 1264 (2009)

    Article  ADS  Google Scholar 

  • Dunn, R.B., Zirker, J.: Sol. Phys. 33(2), 281–304 (1973)

    ADS  Google Scholar 

  • Fathivavsari, H., Ajabshirizadeh, A., Koutchmy, S.: Astrophys. Space Sci. 353(2), 347–355 (2014). See also VizieR Online Data Catalog: 398–710 nm Sun spectral atlases in Simbad (2014)

    Article  ADS  Google Scholar 

  • Gadun, A.S.: Kinemat. Phys. Celest. Bodies 11(3), 54 (1995)

    Google Scholar 

  • Johnson, C.B.: Appl. Opt. 12, 1031 (1972)

    Article  ADS  Google Scholar 

  • Koutchmy, S.: Astron. Astrophys. 61(3), 397–404 (1977)

    ADS  Google Scholar 

  • Koutchmy, S.: In: Rabin, D.M., et al. (eds.) Infrared Solar Physics. IAU Symp., vol. 154, pp. 239–250 (1994)

    Chapter  Google Scholar 

  • Koutchmy, S., Koutchmy, O.: Astron. Astrophys. Suppl. Ser. 13, 295 (1974)

    ADS  Google Scholar 

  • Koutchmy, O., Koutchmy, S.: In: von der Luhe, O. (ed.) Proc. of 10th Sacramento Peak Summer Workshop, High Spatial Resolution Solar Observations (Sunspot, NSO), p. 217 (1989)

    Google Scholar 

  • Koutchmy, S., Koutchmy, O., Kotov, V.: Astron. Astrophys. 59, 189 (1977)

    ADS  Google Scholar 

  • Lites, B.W.: Sol. Phys. 85, 193–214 (1983)

    Article  ADS  Google Scholar 

  • Louis, R.E., Mathew, S.K., Bellot Rubio, L.R., Ichimoto, K., Ravindra, B., Raja Bayanna, A.: Astrophys. J. 752, 109 (2012)

    Article  ADS  Google Scholar 

  • Mathew, S.K., Zakharov, V., Solanki, S.K.: Astron. Astrophys. 501, L19–L22 (2009)

    Article  ADS  Google Scholar 

  • Molowny-Horas, R.: Sol. Phys. 154, 29–39 (1994)

    Article  ADS  Google Scholar 

  • Richardson, W.H.: J. Opt. Soc. Am. 62, 55 (1972)

    Article  ADS  Google Scholar 

  • Rosen, W.A., Poss, H.L.: Sol. Phys. 78, 17–27 (1982)

    Article  ADS  Google Scholar 

  • Rozelot, J.P., Fazel, Z.: Sol. Phys. 287(1–2), 161–170 (2013)

    Article  ADS  Google Scholar 

  • Rutten, R.J.: The solar atmosphere, Special issue in celebration of C. de Jager’s 80th birthday, Eds. Sterken and van der Hucht. J. Astron. Data 8(8) (2002)

  • Sechi, A.: Le Soleil. Gauthier-Villars, Paris (1870)

    Google Scholar 

  • Sobotka, M., Puschmann, K.G.: Astron. Astrophys. 504, 575–581 (2009)

    Article  ADS  Google Scholar 

  • Solov’ev, A., Kirichek, E.: Astrophys. Space Sci. 352, 23–42 (2014)

    Article  ADS  Google Scholar 

  • Suematsu, Y., Tsuneta, S., Ichimoto, K., Shimizu, T., Otsubo, M., Katsukawa, Y., Nakagiri, M., Noguchi, M., Tamura, T., Kato, Y., et al.: Sol. Phys. 249, 197–220 (2008)

    Article  ADS  Google Scholar 

  • Tavabi, E., Koutchmy, S.: Astrophys. Space Sci. 352(1), 7–15 (2014)

    Article  ADS  Google Scholar 

  • Tavabi, E., Koutchmy, S., Ajabshirzadeh, A.: New Astron. 16(4), 296–305 (2011)

    Article  ADS  Google Scholar 

  • Tavabi, E., Koutchmy, S., Ajabshirzadeh, A.: Sol. Phys. 283(1), 187–194 (2013)

    Article  ADS  Google Scholar 

  • Tsuneta, S., Ichimoto, K., Katsukawa, Y., et al.: Sol. Phys. 249, 167–196 (2008)

    Article  ADS  Google Scholar 

  • Vernazza, J.E., Avrett, E.H., Loeser, R.L.: Astrophys. J. Suppl. Ser. 30, 1–60 (1976)

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S.: Astron. Astrophys. 487, 399 (2008)

    Article  ADS  Google Scholar 

  • Wedemeyer-Böhm, S., Rouppe van der Voort, L.: Astron. Astrophys. 503, 225–239 (2009)

    Article  ADS  Google Scholar 

  • Yeo, K.L., Feller, A., Solanki, S.K., Couvidat, S., Danilovic, S., Krivova, N.A.: Astron. Astrophys. 561, A22 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Hinode is a Japanese mission developed and launched by ISAS/JAXA, collaborating with NAOJ as a domestic partner, NASA and STFC (UK) as international partners. Scientific operation of the Hinode mission is conducted by the Hinode science team organized at ISAS/JAXA. This team mainly consists of scientists from institutes in the partner countries. Support for the post-launch operation is provided by JAXA and NAOJ (Japan), STFC (UK), NASA, ESA, and NSC (Norway). The work of H.G. is supported by an award of the French Embassy in Teheran. We thank P.-A. Lhote, L. Vigroux and F. Bernardeau for their constant interest and support. We thank Hassan Fathivavsari, Jean-Claude Vial, Frederic Baudin and specially Leon Golub for providing a critical reading of the paper. Finally we want to thank our referee for pointing out excellent remarks that permitted to significantly improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Goodarzi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(WMV 1.7 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodarzi, H., Koutchmy, S. & Adjabshirizadeh, A. Improved SOT (Hinode mission) high resolution solar imaging observations. Astrophys Space Sci 358, 25 (2015). https://doi.org/10.1007/s10509-015-2422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-015-2422-4

Keywords

Navigation