Advertisement

Spin field equations and Heun’s equations

  • Min Jiang
  • Xuejing Wang
  • Zhongheng Li
Original Article

Abstract

The Kerr-Newman-(anti) de Sitter metric is the most general stationary black hole solution to the Einstein-Maxwell equation with a cosmological constant. We study the separability of the equations of the massless scalar (spin s=0), neutrino (s=1/2), electromagnetic (s=1), Rarita-Schwinger (s=3/2), and gravitational (s=2) fields propagating on this background. We obtain the angular and radial master equations, and show that the master equations are transformed to Heun’s equation. Meanwhile, we give the condition of existence of event horizons for Kerr-Newman-(anti) de Sitter spacetime by using Sturm theorem.

Keywords

Black holes Spin fields Heun’s equation 

Notes

Acknowledgements

This work was supported by NSFC Grant Nos. 11475148, 11075141, 11173021 and 11305140.

References

  1. Blandin, J., Pons, R., Marcilhacy, G.: Lett. Nuovo Cimento 39(17), 561 (1983) MathSciNetADSCrossRefGoogle Scholar
  2. Carmeli, M.: Classical Fields: General Relativity and Gauge Theory. Wiley, New York (1982) zbMATHGoogle Scholar
  3. Carter, B.: Commun. Math. Phys. 10(4), 280 (1968) zbMATHGoogle Scholar
  4. Chruściel, P.T., Ölz, C.R., Szybka, S.J.: Phys. Rev. D, Part. Fields 86(12), 124041 (2012) CrossRefGoogle Scholar
  5. Fackerell, E.D., Crossman, R.G.: J. Math. Phys. 18(9), 1849 (1977) zbMATHMathSciNetADSCrossRefGoogle Scholar
  6. Gibbons, G.W., Hawking, S.W.: Phys. Rev. D, Part. Fields 15(10), 2738 (1977) MathSciNetADSCrossRefGoogle Scholar
  7. Goldberg, J.N., Sachs, R.K.: Acta Phys. Pol. B, Proc. Suppl. 22, 13 (1962) zbMATHMathSciNetGoogle Scholar
  8. Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: J. Math. Phys. 8(11), 2155 (1967) zbMATHMathSciNetADSCrossRefGoogle Scholar
  9. Konoplya, R.A., Zhidenko, A.: Phys. Rev. D, Part. Fields 76(8), 084018 (2007) MathSciNetADSCrossRefGoogle Scholar
  10. Konoplya, R.A., Zhidenko, A.: Rev. Mod. Phys. 83(3), 793 (2011) ADSCrossRefGoogle Scholar
  11. Leaver, E.W.: J. Math. Phys. 27(5), 1238 (1983) MathSciNetADSCrossRefGoogle Scholar
  12. Li, Z.-H.: Phys. Rev. D, Part. Fields 62(2), 024001 (2000) CrossRefGoogle Scholar
  13. Plebanski, J.F., Demianski, M.: Ann. Phys. 98(1), 98 (1976) zbMATHMathSciNetADSCrossRefGoogle Scholar
  14. Regge, T., Wheeler, J.A.: Phys. Rev. 108(4), 1063 (1957) zbMATHMathSciNetADSCrossRefGoogle Scholar
  15. Suzuki, H., Takasugi, E., Umetsu, H.: Prog. Theor. Phys. 100(3), 491 (1998) MathSciNetADSCrossRefGoogle Scholar
  16. Suzuki, H., Takasugi, E., Umetsu, H.: Prog. Theor. Phys. 102(2), 253 (1999) MathSciNetADSCrossRefGoogle Scholar
  17. Teukolsky, S.A.: Astrophys. J. 185, 635 (1973) MathSciNetADSCrossRefGoogle Scholar
  18. Torres del Castillo, G.F.: J. Math. Phys. 29(4), 971 (1988a) zbMATHMathSciNetADSCrossRefGoogle Scholar
  19. Torres del Castillo, G.F.: J. Math. Phys. 29(9), 2078 (1988b) zbMATHMathSciNetADSCrossRefGoogle Scholar
  20. Torres del Castillo, G.F.: J. Math. Phys. 30(2), 446 (1989) zbMATHMathSciNetADSCrossRefGoogle Scholar
  21. Vishveshwara, C.V.: Phys. Rev. D, Part. Fields 1(10), 2870 (1970) ADSCrossRefGoogle Scholar
  22. Zerilli, F.J.: Phys. Rev. D, Part. Fields 2(10), 2141 (1970) zbMATHMathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of PhysicsZhejiang University of TechnologyHangzhouChina

Personalised recommendations