Prudence in estimating coherence between planetary, solar and climate oscillations

  • Sverre HolmEmail author
Original Article


There are claims that there is correlation between the speed of center of mass of the solar system and the global temperature anomaly. This is partly grounded in data analysis and partly in a priori expectations. The magnitude squared coherence function is the proper measure for testing such claims. It is not hard to produce high coherence estimates at periods around 15–22 and 50–60 years between these data sets. This is done in two independent ways, by wavelets and by a periodogram method. But does a coherence of high value mean that there is coherence of high significance? In order to investigate that, four different measures for significance are studied. Due to the periodic nature of the data, only Monte Carlo simulation based on a non-parametric random phase method is appropriate. None of the high values of coherence then turn out to be significant. Coupled with a lack of a physical mechanism that can connect these phenomena, the planetary hypothesis is therefore dismissed.


Planetary motion Climate model Magnitude squared coherence 



Wavelet coherence software was provided by Aslak Grinsted and Stepan Poluianov. The software for randomization of phase was written by Vincent Moron. Thanks to Fritz Albregtsen, Knut Liestøl, and Bjørn Samset for valuable comments.


  1. Abreu, J., Albert, C., Beer, J., Ferriz-Mas, A., McCracken, K., Steinhilber, F., Ferriz-Mas, A., Hollerbach, R., Stefani, F., Tilgner, A.: Sol. Phys. 289(6), 2343 (2014) ADSCrossRefGoogle Scholar
  2. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: Astron. Astrophys. 548, 88 (2012) ADSCrossRefGoogle Scholar
  3. Benesty, J., Chen, J., Huang, Y.A.: IEEE Int. Conf. Acoust., Speech Sign. Proc., vol. 3 (2006) Google Scholar
  4. Brohan, P., Kennedy, J., Harris, I., Tett, S., Jones, P.: J. Geophys. Res. 111(D12), 12106 (2006) CrossRefGoogle Scholar
  5. Callebaut, D.K., de Jager, C., Duhau, S.: J. Atmos. Sol.-Terr. Phys. (2012) Google Scholar
  6. Cameron, R., Schüssler, M.: Astron. Astrophys. 557, 83 (2013) CrossRefGoogle Scholar
  7. Carter, G.C.: Proc. IEEE 75(2), 236 (1987) CrossRefGoogle Scholar
  8. Carter, G.C., Knapp, C., Nuttall, A.H.: IEEE Trans. Audio Electroacoust. 21(4), 337 (1973) CrossRefGoogle Scholar
  9. Cauquoin, A., Raisbeck, G., Jouzel, J., Bard, E.: Astron. Astrophys. 561, 132 (2014) ADSCrossRefGoogle Scholar
  10. Ebisuzaki, W.: J. Climate 10(9), 2147 (1997) ADSCrossRefGoogle Scholar
  11. Gao, L.H., Yan, Z.W., Quan, X.W.: Clim. Dyn., 1 (2014) Google Scholar
  12. Grinsted, A., Moore, J.C., Jevrejeva, S.: Nonlinear Process. Geophys. 11(5/6), 561 (2004) ADSCrossRefGoogle Scholar
  13. Harris, F.J.: Proc. IEEE 66(1), 51 (1978) ADSCrossRefGoogle Scholar
  14. Holm, S.: J. Atmos. Sol.-Terr. Phys. 110–111, 23 (2014a) CrossRefGoogle Scholar
  15. Holm, S.: J. Atmos. Sol.-Terr. Phys. 119, 230 (2014b) ADSCrossRefGoogle Scholar
  16. Jaki, S.L.: Planets and Planetarians: A History of Theories of the Origin of Planetary Systems, p. 26. Scottish Academic Press, Edinburgh (1978) Google Scholar
  17. Kuo, C., Lindberg, C., Thomson, D.J.: Nature 343(6260), 709 (1990) ADSCrossRefGoogle Scholar
  18. Moron, V., Robertson, A.W., Ward, M.N., Ndiaye, O.: J. Climate 21(2), 288 (2008) ADSCrossRefGoogle Scholar
  19. Poluianov, S., Usoskin, I.: Sol. Phys. 289(6), 2333 (2014) ADSCrossRefGoogle Scholar
  20. Scafetta, N.: J. Atmos. Sol.-Terr. Phys. 72(13), 951 (2010) ADSCrossRefGoogle Scholar
  21. Scafetta, N.: J. Atmos. Sol.-Terr. Phys. 81, 27 (2012) ADSCrossRefGoogle Scholar
  22. Scafetta, N.: Astrophys. Space Sci., 1 (2014) Google Scholar
  23. Sun, C., Li, J., Jin, F.-F.: Clim. Dyn., 1 (2015) Google Scholar
  24. Synnevåg, J.-F., Austeng, A., Holm, S.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1606 (2007) CrossRefGoogle Scholar
  25. Torrence, C., Webster, P.J.: J. Climate 12(8), 2679 (1999) ADSCrossRefGoogle Scholar
  26. Traversi, R., Usoskin, I., Solanki, S., Becagli, S., Frezzotti, M., Severi, M., Stenni, B., Udisti, R.: Sol. Phys. 280(1), 237 (2012) ADSCrossRefGoogle Scholar
  27. Wang, S.-Y., Liu, X., Yianni, J., Christopher Miall, R., Aziz, T.Z., Stein, J.F.: J. Neurosci. Methods 136(2), 197 (2004) CrossRefGoogle Scholar
  28. Yao, S.-L., Huang, G., Wu, R.-G., Qu, X.: Theor. Appl. Climatol., 1 (2015) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of OsloOsloNorway

Personalised recommendations