Skip to main content

Numerical analysis of galactic rotation curves


In this paper we present the discussion on the salient points of the computational analysis that are at the basis of the paper Rotation Curves of Galaxies by Fourth Order Gravity (Stabile and Scelza, Phys. Rev. D, 84:124023, 2011). In fact in this paper any galactic component (bulge, disk and Dark matter component) required an onerous numerical computation since the Gauss theorem is not applicable in the Fourth Order Gravity. The computational and data analysis have been made with the software Mathematica®.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. Capozziello, S., Stabile, A.: Class. Quantum Gravity 26, 085019 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Capozziello, S., Stabile, A.: Classical and Quantum Gravity: Theory, Analysis and Applications, Chap. 2. Nova Science Publishers, New York (2010). ISBN 978-1-61122-957-8

    Google Scholar 

  3. Capozziello, S., Stabile, A., Troisi, A.: Phys. Rev. D 76, 104019 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Carroll, S.M., Press, W.H., Turner, E.L.: Annu. Rev. Astron. Astrophys. 30, 499 (1992)

    Article  ADS  Google Scholar 

  5. Clifton, T.: Phys. Rev. D 77, 024041 (2008)

    Article  ADS  Google Scholar 

  6. Cole, S., et al.: Mon. Not. R. Astron. Soc. 362, 505 (2005)

    Article  ADS  Google Scholar 

  7. Damour, T., Esposito-Farèse, G.: Class. Quantum Gravity 9, 2093 (1992)

    Article  ADS  MATH  Google Scholar 

  8. de Bernardis, P., et al.: Nature 404, 995 (2000)

    Article  Google Scholar 

  9. Fich, M., Blitz, L., Stark, A.A.: Astron. Astrophys. 342, 272 (1989)

    ADS  Google Scholar 

  10. Landau, L.D., Lifšits, E.M.: Theoretical Physics, vol. II. Butterworth, Amsterdam (1994)

    Google Scholar 

  11. Navarro, J.F., Frenk, C.S., White, S.D.M.: Astrophys. J. 490, 493 (1997)

    Article  ADS  Google Scholar 

  12. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 631, 1 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Olmo, G.J.: Phys. Rev. D 72, 083505 (2005a)

    Article  ADS  Google Scholar 

  14. Olmo, G.J.: Phys. Rev. Lett. 95, 261102 (2005b)

    Article  ADS  Google Scholar 

  15. Olmo, G.J.: Phys. Rev. D 75, 023511 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  17. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  18. Sahni, V., Starobinski, A.: Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  19. Schmidt, H.J.: Astron. Nachr. 307, 339 (1986)

    Article  ADS  MATH  Google Scholar 

  20. Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 170, 377 (2007)

    Article  ADS  Google Scholar 

  21. Stabile, A.: Phys. Rev. D 82, 064021 (2010a)

    Article  ADS  Google Scholar 

  22. Stabile, A.: Phys. Rev. D 82, 124026 (2010b)

    Article  ADS  Google Scholar 

  23. Stabile, A., Scelza, G.: Phys. Rev. D 84, 124023 (2011)

    Article  ADS  Google Scholar 

  24. Starobinsky, A.: Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  25. Stelle, K.: Gen. Relativ. Gravit. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Stabile.


Appendix A: Galactic rotation curve code


Appendix B: Data analysis code


Appendix C: Find fit


Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scelza, G., Stabile, A. Numerical analysis of galactic rotation curves. Astrophys Space Sci 357, 44 (2015).

Download citation


  • Galactic rotation curves
  • Numerical analysis