Lagrangian derivation of the two coupled field equations in the Janus cosmological model

  • Jean-Pierre PetitEmail author
  • G. D’Agostini
Original Article


After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.


Interacting positive and negative masses Coupled field equations Acceleration of the universe Dark energy Janus geometry Janus cosmological model 


  1. Adler, R., Bazin, R., Schiifer, M.: Introduction to General Relativity. McGraw-Hill, New York (1967) Google Scholar
  2. Bondi, H.: Negative mass in general relativity. Rev. Mod. Phys. 29(3), 423 (1957) CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. Bonnor, W.B.: Negative mass and general relativity. Gen. Relativ. Gravit. 21(11), 1143–1157 (1989) CrossRefADSzbMATHMathSciNetGoogle Scholar
  4. Combes, F.: Explaining the formation of bulges with MOND (2015a). arXiv:1501.03603v1
  5. Combes, F.: Let’s dare to modify Newton’s law. Sci. Avenir 816, 34–35 (2015b) Google Scholar
  6. El-Ad, H., Piran, T., da Costa, L.N.: Astrophys. J. Lett. 462, L13 (1996) CrossRefADSGoogle Scholar
  7. El-Ad, H., Piran, T., da Costa, L.N.: Mon. Not. R. Astron. Soc. 287(790), 429 (1997) Google Scholar
  8. El-Ad, H., Piran, T.: Astrophys. J. 491, 421 (1997) CrossRefADSGoogle Scholar
  9. Faraoni, V.: The Lagrangian description of perfect fluids and modified gravity with extra force (2009). arXiv:0912.1249
  10. Faraoni, V., Dent, J.B., Saridakis, E.N.: Covariantizing the interaction between dark energy and dark matter (2014). arXiv:1405.7288v2
  11. Filippenko, A.V., Riess, A.G.: In: AIP Conf. Proc., vol. 540, pp. 227–246 (2001) CrossRefGoogle Scholar
  12. Hossenfelder, S.: A bimetric theory with exchange symmetry. Phys. Rev. D 78, 044015 (2008) CrossRefADSMathSciNetGoogle Scholar
  13. Henry-Couannier, F.: Int. J. Mod. Phys. A 20, 2341 (2005) CrossRefADSMathSciNetGoogle Scholar
  14. Knop, R., et al.: Astrophys. J. 598, 102 (2003) CrossRefADSGoogle Scholar
  15. Leibundgut, B.: Annu. Rev. Astron. Astrophys. 39, 67 (2001) CrossRefADSGoogle Scholar
  16. Milgrom, M.: Astrophys. J. 270, 365 (1983) CrossRefADSGoogle Scholar
  17. Milgrom, M.: Astrophys. J. 496, L89 (1998) CrossRefADSGoogle Scholar
  18. Milgrom, M., Sanders, R.H.: Astrophys. J. 658, 17 (2007) CrossRefADSGoogle Scholar
  19. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) CrossRefADSGoogle Scholar
  20. Petit, J.P.: The missing mass problem. Nuovo Cimento B 109, 697–710 (1994) CrossRefADSGoogle Scholar
  21. Petit, J.P.: Twin Universe cosmology. Astrophys. Space Sci. 226, 273–307 (1995) CrossRefADSzbMATHGoogle Scholar
  22. Petit, J.P., Midy, P., Landhseat, F.: Twin matter against dark matter. In: Conf. on Astr. and Cosm. “Where Is the Matter?”, Marseille (2001) Google Scholar
  23. Petit, J.P., D’Agostini, G.: Negative mass in cosmology and nature of dark energy. Astrophys. Space Sci. 354, 611–615 (2014a) ADSGoogle Scholar
  24. Petit, J.P., D’Agostini, G.: Cosmological bimetric model with interacting positive and negative masses and two different speeds of light, in agreement with the observed acceleration of the universe. Mod. Phys. Lett. A 29(35c) (2014b). doi: 10.1142/S021773231450182X
  25. Petit, J.P., D’Agostini, G.: Cancellation of the central singularity of the Schwarzschild solution with natural mass inversion process. Mod. Phys. Lett. A (2015, accepted) Google Scholar
  26. Petit, J.P., Lafont, X., Borallo, N.: 2D simulations of VLS with opposite masses populations. Unpublished (2015) Google Scholar
  27. Piran, T.: On gravitational repulsion. Gen. Relativ. Gravit. 29(11), 1363 (1997) CrossRefADSzbMATHMathSciNetGoogle Scholar
  28. Riess, A.G., et al.: Astron. J. 116, 1009 (1998) CrossRefADSGoogle Scholar
  29. Riess, A.G.: Publ. Astron. Soc. Pac. 112, 1284 (2000) CrossRefADSGoogle Scholar
  30. Riess, A.G.: Astron. J. 607, 665–687 (2004) CrossRefGoogle Scholar
  31. Schwarzschild, K.: Über das Gravitational eines Massenpunktes nach der Einsteineschen Theory, pp. 189–196. Sitzber. Preuss. Akad. Wiss., Berlin (1916) Google Scholar
  32. Souriau, J.M.: Structure des Systèmes Dynamiques Dunod, France (1970) (Structure of Dynamical Systems, Birkhaüser, Boston, 1997) zbMATHGoogle Scholar
  33. Tonry, J.T., et al.: Astrophys. J. 594, 1 (2003) CrossRefADSGoogle Scholar
  34. Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (2005) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.French National Center for Scientific Research, CNRSPertuisFrance
  2. 2.MentinFrance

Personalised recommendations