Advertisement

Astrophysics and Space Science

, Volume 355, Issue 2, pp 361–369 | Cite as

Energy conditions in f(T) gravity with non-minimal torsion-matter coupling

  • M. Zubair
  • Saira Waheed
Original Article

Abstract

The present paper examines the validity of energy bounds in a modified theory of gravity involving non-minimal coupling of torsion scalar and perfect fluid matter. In this respect, we formulate the general inequalities of energy conditions by assuming the flat FRW universe. For the application of these bounds, we particularly focus on two specific models that are recently proposed in literature and also choose the power law cosmology. We find the feasible constraints on the involved free parameters and evaluate their possible ranges graphically for the consistency of these energy bounds.

Keywords

f(T) gravity Raychaudhuri equation Energy conditions 

References

  1. Allen, S.W., Schmidt, R.W., Ebeling, H., Fabian, A.C., Spey-broeck, L.Y.: Mon. Not. R. Astron. Soc. 353, 457 (2004) ADSCrossRefGoogle Scholar
  2. Bamba, K., Geng, C.-Q.: J. Cosmol. Astropart. Phys. 11, 008 (2011) ADSCrossRefGoogle Scholar
  3. Bamba, K., Capozziello, S., Nojiri, S., Odintsov, S.D.: Astrophys. Space Sci. 345, 155 (2012a) ADSCrossRefGoogle Scholar
  4. Bamba, K., Myrzakulov, R., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 85, 104036 (2012b) ADSCrossRefGoogle Scholar
  5. Benaoum, H.B.: Adv. High Energy Phys. 2012, 357802 (2012) MathSciNetCrossRefGoogle Scholar
  6. Bengochea, G.R., Ferraro, R.: Phys. Rev. D 79, 124019 (2009) ADSCrossRefGoogle Scholar
  7. Bennett, C.L., et al.: Astrophys. J. Suppl. Ser. 148, 1 (2003) ADSCrossRefGoogle Scholar
  8. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002) ADSCrossRefGoogle Scholar
  9. Bertolami, O., Páramos, J.: Phys. Rev. D 89, 044012 (2014) ADSCrossRefGoogle Scholar
  10. Bertolami, O., Sequeira, M.C.: Phys. Rev. D 79, 104010 (2009) ADSMathSciNetCrossRefGoogle Scholar
  11. Bertolami, O., Böhmer, C.G., Harko, T., Lobo, F.S.N.: Phys. Rev. D 75, 104016 (2007) ADSMathSciNetCrossRefGoogle Scholar
  12. Brans, C.H.: The roots of scalar-tensor theory: an approximate history (2005). arXiv:gr-qc/0506063
  13. Caldwell, R.R., Dave, R., Steinhardt, P.J.: Phys. Rev. Lett. 80, 1582 (1998) ADSCrossRefGoogle Scholar
  14. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, Reading (2004) MATHGoogle Scholar
  15. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rep. 513, 1 (2012) ADSMathSciNetCrossRefGoogle Scholar
  16. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S.: Phys. Rev. D 73, 084007 (2006) ADSCrossRefGoogle Scholar
  17. Faraoni, V.: Cosmology in Scalar-Tensor Gravity. Springer, Berlin (2004) CrossRefMATHGoogle Scholar
  18. Ferraro, R., Fiorini, F.: Phys. Rev. D 75, 084031 (2007) ADSMathSciNetCrossRefGoogle Scholar
  19. Fujii, Y., Maeda, K.: The Scalar-Tensor Theory of Gravitation. Cambridge University Press, Cambridge (2004) CrossRefMATHGoogle Scholar
  20. Garcia, N.M.: Phys. Rev. D 83, 104032 (2011) ADSCrossRefGoogle Scholar
  21. Gong, Y., Wang, A.: Phys. Lett. B 652, 63 (2007) ADSCrossRefGoogle Scholar
  22. Gong, Y., et al.: J. Cosmol. Astropart. Phys. 08, 018 (2007) ADSCrossRefGoogle Scholar
  23. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 024020 (2011) ADSCrossRefGoogle Scholar
  24. Harko, T., Lobo, F.S.N., Otalora, G., Saridakis, E.N.: Phys. Rev. D 89, 124036 (2014) ADSCrossRefGoogle Scholar
  25. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973) CrossRefMATHGoogle Scholar
  26. Hayashi, K., Shirafuji, T.: Phys. Rev. D 19, 3524 (1979) ADSMathSciNetCrossRefGoogle Scholar
  27. Karami, K., et al.: Phys. Rev. D 88, 084034 (2013) ADSCrossRefGoogle Scholar
  28. Li, B., Barrow, J.D., Mota, D.F.: Phys. Rev. D 76, 044027 (2007) ADSMathSciNetCrossRefGoogle Scholar
  29. Liu, d., Reboucas, M.J.: Phys. Rev. D 86, 083515 (2012) ADSCrossRefGoogle Scholar
  30. Lobo, F.S.N.: The dark side of gravity: modified theories of gravity. arXiv:0807.1640 (2008). Invited chapter to appear in an edited collection “Dark Energy-Current Advances and Ideas”
  31. Maluf, J.W.: Ann. Phys. 525, 339 (2013) MathSciNetCrossRefGoogle Scholar
  32. Moller, C.: Mat. Fys. Skr. Dan. Vidensk. Selsk. 1, 10 (1961) Google Scholar
  33. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011) ADSMathSciNetCrossRefGoogle Scholar
  34. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003) ADSCrossRefGoogle Scholar
  35. Pellegrini, C., Plebanski, J.: Mat. Fys. Skr. Dan. Vidensk. Selsk. 2, 4 (1963) Google Scholar
  36. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999) ADSCrossRefGoogle Scholar
  37. Riess, A.G., et al.: Astrophys. J. 116, 1009 (1998) Google Scholar
  38. Rodrigues, M.E., et al.: Phys. Rev. D 86, 104059 (2012) ADSCrossRefGoogle Scholar
  39. Rodrigues, M.E., et al.: Int. J. Mod. Phys. D 22, 1350043 (2013) ADSCrossRefGoogle Scholar
  40. Rodrigues, M.E., et al.: Int. J. Mod. Phys. D 23, 1450004 (2014) ADSCrossRefGoogle Scholar
  41. Santos, J., Alcaniz, J.S.: Phys. Lett. B 642, 311 (2006) MathSciNetCrossRefGoogle Scholar
  42. Santos, J., Alcaniz, J.S., Reboucas, M.J.: Phys. Rev. D 74, 067301 (2006) ADSCrossRefGoogle Scholar
  43. Santos, J., et al.: Phys. Rev. D 76, 083513 (2007) ADSMathSciNetCrossRefGoogle Scholar
  44. Santos, J., Reboucas, M.J., Alcaniz, J.S.: Int. J. Mod. Phys. D 19, 1315 (2010) ADSCrossRefGoogle Scholar
  45. Setare, M.R., Mohammadipour, N.: J. Cosmol. Astropart. Phys. 11, 030 (2012) ADSCrossRefGoogle Scholar
  46. Setare, M.R., Mohammadipour, N.: J. Cosmol. Astropart. Phys. 01, 015 (2013) ADSCrossRefGoogle Scholar
  47. Setare, M.R., Darabi, F.: Gen. Relativ. Gravit. 44, 2521 (2012) ADSCrossRefGoogle Scholar
  48. Sharif, M., Waheed, S.: Adv. High Energy Phys. 2013, 253985 (2013) Google Scholar
  49. Sharif, M., Zubair, M.: J. Phys. Soc. Jpn. 82, 014002 (2013a) ADSCrossRefGoogle Scholar
  50. Sharif, M., Zubair, M.: J. High Energy Phys. 12, 079 (2013b) ADSCrossRefGoogle Scholar
  51. Sharif, M., Zubair, M.: Astrophys. Space Sci. 349, 529 (2014a) ADSCrossRefGoogle Scholar
  52. Sharif, M., Zubair, M.: Astrophys. Space Sci. 352, 263 (2014b) ADSCrossRefGoogle Scholar
  53. Sharif, M., Zubair, M.: Astrophys. Space Sci. 349, 457 (2014c) ADSCrossRefGoogle Scholar
  54. Sharif, M., Zubair, M.: Gen. Relativ. Gravit. 46, 1723 (2014d) ADSCrossRefGoogle Scholar
  55. Spergel, D.N., et al.: Astrophys. J. Suppl. Ser. 170, 377 (2007) ADSCrossRefGoogle Scholar
  56. Steinhardt, P.J., Wang, L., Zlatev, I.: Phys. Rev. Lett. 59, 123504 (1999) ADSGoogle Scholar
  57. Tegmark, M., et al.: Phys. Rev. D 69, 03501 (2004) CrossRefGoogle Scholar
  58. Visser, M.: Phys. Rev. D 56, 7578 (1997) ADSCrossRefGoogle Scholar
  59. Wang, J., Liao, K.: Class. Quantum Gravity 29, 215016 (2012) ADSCrossRefGoogle Scholar
  60. Wang, J., et al.: Phys. Lett. B 689, 133 (2010) ADSMathSciNetCrossRefGoogle Scholar
  61. Zhao, Y.Y.: Eur. Phys. J. C 72, 1924 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mathematics, COMSATSInstitute of Information TechnologyLahorePakistan

Personalised recommendations