Astrophysics and Space Science

, Volume 355, Issue 2, pp 309–316 | Cite as

Minimal dielectric polarization stopping power in white dwarfs

  • M. Akbari-Moghanjoughi
Original Article


In this paper, we investigate the energy loss of ions by arbitrarily degenerate electron fluid, in the framework of hydrodynamic model by incorporating the generalized relativistic degeneracy pressure, Wigner–Seitz cell Coulomb interactions, and electron spin-exchange pressures for a wide range of electron number-density regimes relevant to the solid density (SD), inertial confinement fusion (ICF), warm dense matter (WDM), and super-dense astrophysical objects, such as white dwarf (WD) stars. It is found that the use of non-relativistic degeneracy pressure for electron fluid, instead of the exact Chandrasekhar relativistic degeneracy pressure, for the ICF density regime and beyond can introduce significant relative error to the stopping power calculation. Therefore, current study may introduce a significant change to the ICF scheme of super-compressed fuel. It is further revealed that the relativistic degeneracy parameter, R0, and the atomic number of constituent ions, Z, significantly affect the maximum stopping power velocity of ions. We also discover that the velocity-averaged energy loss function becomes minimal in electron number density typical of white dwarf stars, n0≃2×1030 cm−3. It is found that the characteristic density for the minimal ion beam energy loss does not depend on the value of other plasma parameters, such as the ion–electron collision rate and the ion temperature or its atomic number. The latter finding, in particular, may help in better understanding of fusion-burning waves in dense compact stars and their cooling mechanisms.


Stopping power Fusion Hydrodynamics White dwarfs 


  1. Akbari-Moghanjoughi, M.: Phys. Plasmas 17, 072101 (2010) ADSCrossRefGoogle Scholar
  2. Akbari-Moghanjoughi, M.: Phys. Plasmas 20, 042706 (2013a) ADSCrossRefGoogle Scholar
  3. Akbari-Moghanjoughi, M.: Phys. Plasmas 20, 092902 (2013b) ADSCrossRefGoogle Scholar
  4. Akbari-Moghanjoughi, M.: Phys. Plasmas 21, 053301 (2014) ADSCrossRefGoogle Scholar
  5. Arista, N.R.: J. Phys. C, Solid State Phys. 18, 5127 (1985) ADSCrossRefGoogle Scholar
  6. Arista, N.R., Brandt, W.: Phys. Rev. E 23, 1898 (1981) ADSCrossRefGoogle Scholar
  7. Arista, N.R., Brandt, W.: Phys. Rev. E 29, 1471 (1984) ADSCrossRefGoogle Scholar
  8. Barriga-Carrasco, M.D.: Phys. Rev. E 82, 046403 (2010) ADSCrossRefGoogle Scholar
  9. Bethe, H.: Ann. Phys. (Leipz.) 5, 325 (1930) ADSCrossRefGoogle Scholar
  10. Bohr, N.: Philos. Mag. 25, 10 (1913) CrossRefGoogle Scholar
  11. Bret, A., Deutsch, C.: Phys. Rev. E 47, 1276 (1993) ADSCrossRefGoogle Scholar
  12. Bringa, E.M., Arista, N.R.: Phys. Rev. E 54, 4101 (1996) ADSCrossRefGoogle Scholar
  13. Brouwer, H.H., Kraeft, W.D., Luft, M., Meyer, T., Schram, P.P.J.M., Strege, B.: Contrib. Plasma Phys. 30, 263 (1990) ADSCrossRefGoogle Scholar
  14. Chandrasekhar, S.: An Introduction to the Study of Stellar Structure. University of Chicago Press, Chicago (1939) MATHGoogle Scholar
  15. Chandrasekhar, S.: Mon. Not. R. Astron. Soc. 113, 667 (1953) ADSCrossRefGoogle Scholar
  16. Chandrasekhar, S.: Science 226, 4674 (1984) CrossRefGoogle Scholar
  17. Chen, F.F.: Introduction to Plasma Physics and Controlled Fusion 2nd edn. pp. 122–127. Plenum, New York (1984) CrossRefGoogle Scholar
  18. Chu, M.S.: Phys. Fluids 15, 413 (1972) ADSCrossRefGoogle Scholar
  19. Deutsch, C., Fromy, P.: Phys. Rev. E 51, 632 (1995) ADSCrossRefGoogle Scholar
  20. Deutsch, C., Part, L.: Beams 8, 541 (1990) Google Scholar
  21. Deutsch, C., Tahir, N.A.: Phys. Fluids B 4, 3735 (1992) ADSCrossRefGoogle Scholar
  22. Deutsch, C., Maynard, G., Chabot, M., Gardes, D., Della-Negra, S., Bimbot, R., Rivet, M.F., Fleurier, C., Couillaud, C., Hoffmann, D.H.H., Wahl, H., Weyrich, K., Rosmej, O.N., Tahir, N.A., Jacoby, J., Ogawa, M., Oguri, Y., Hasegawa, J., Sharkov, B., Golubev, A., Fertman, A., Fortov, V.E., Mintsev, V.: Open Plasma Phys. J. 3, 88 (2010) Google Scholar
  23. Eliezer, S., Martínez-Val, J.M.: Laser Part. Beams 16, 581 (1998) ADSCrossRefGoogle Scholar
  24. Emfietzoglou, D., Garcia-Molina, R., Kyriakou, I., Abril, I., Nikjoo, H.: Phys. Med. Biol. 54, 3451 (2009) CrossRefGoogle Scholar
  25. Glenzer, S.H., Callahan, D.A., MacKinnon, A.J., Kline, J.L., Grim, G., et al.: Phys. Plasmas 19, 056318 (2012) ADSCrossRefGoogle Scholar
  26. Hoyle, F., Fowler, W.A.: Astrophys. J. 132, 565 (1960) ADSCrossRefGoogle Scholar
  27. Kothari, D.S., Singh, B.N.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 180(983), 414–423 (1942) ADSCrossRefGoogle Scholar
  28. Leon, P.T., Eliezer, S., Martinez-Val, J.M., Piera, M.: In: 29th EPS Conference on Plasma Physics and Controlled Fusion, Montreux, 17–21 June 2002, ECA, vol. 26B, p. P-2.022 (2002) Google Scholar
  29. Lifshitz, E.M., Pitaevskii, L.P.: Physical Kinetics. Butterworth-Heinemann, Oxford (1981) Google Scholar
  30. Lindhard, J.: Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 28(8), 1 (1954) MathSciNetGoogle Scholar
  31. Lindl, J.: Phys. Plasmas 2, 3933 (1995) ADSCrossRefGoogle Scholar
  32. Nakai, S., et al.: Six hundred times solid density compression of directly driven hollow shell pellets. In: Plasma Physics and Controlled Nuclear Fusion Research (1990) Google Scholar
  33. Nandkumar, R., Pethick, C.J.: Transport coefficients of dense matter in the liquid metal regime. Mon. Not. R. Astron. Soc. 209, 511–524 (1984) ADSCrossRefGoogle Scholar
  34. Nardi, E., Zinamon, Z., Ben-Hamu, D.: Nuovo Cimento A 106, 1839 (1993) ADSCrossRefGoogle Scholar
  35. Ortner, J., Tkachenko, I.M.: Phys. Rev. E 63, 026403 (2001) ADSCrossRefGoogle Scholar
  36. Salpeter, E.E.: Astrophys. J. 134, 669 (1961) ADSMathSciNetCrossRefGoogle Scholar
  37. Shukla, P.K., Akbari-Moghanjoughi, M.: Phys. Rev. E 87, 043106 (2013) ADSCrossRefGoogle Scholar
  38. Shukla, P.K., Eliasson, B.: Phys. Usp. 53, 51 (2010) ADSCrossRefGoogle Scholar
  39. Son, S., Fisch, N.J.: Phys. Rev. Lett. 95, 225002 (2005) ADSCrossRefGoogle Scholar
  40. Speth, E.: Rep. Prog. Phys. 52, 57 (1989) ADSCrossRefGoogle Scholar
  41. Starikov, K.V., Deutsch, C.: Phys. Rev. E 71, 026407 (2005) ADSCrossRefGoogle Scholar
  42. Steinberg, M., Ortner, J.: Phys. Rev. E 63, 046401 (2001) ADSCrossRefGoogle Scholar
  43. Walter, M., Toeper, C., Zwicknagel, G.: Nucl. Instrum. Methods Phys. Res., Sect. B 168, 347 (2000) ADSCrossRefGoogle Scholar
  44. Zwicknagel, G., Deutsch, C.: Phys. Rev. E 56, 970 (1997) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Physics, Faculty of SciencesAzarbaijan Shahid Madani UniversityTabrizIran
  2. 2.International Centre for Advanced Studies in Physical Sciences & Institute for Theoretical PhysicsRuhr University BochumBochumGermany

Personalised recommendations