Astrophysics and Space Science

, Volume 355, Issue 2, pp 303–308 | Cite as

Two new exact solutions for relativistic perfect fluid spheres through Lake’s algorithm

Original Article

Abstract

Two new exact solutions of Einstein’s field equations for perfect fluid distribution are obtained using Lake’s (Phys. Rev. D 67:104015, 2003) algorithm. The same are utilized to construct stellar models of physical relevance and possessing the maximum mass 2.6956M Θ (quark star) and 0.9643M Θ (white dwarfs) with the corresponding radius 20.5489 km and 3.1699 km respectively.

Keywords

Canonical coordinates Exact solutions Super-dense star Einstein’s field equations 

Notes

Acknowledgements

The authors are very grateful to the Honorable Editors and Referee for his valuable comments and suggestions, which made the paper in more presentable form. The authors are also grateful to the University of Nizwa, Sultanate of Oman, for providing all the necessary facility and encouragements.

References

  1. Baumgarte, T.W., Rendall, A.D.: Class. Quantum Gravity 10, 327 (1993) ADSCrossRefGoogle Scholar
  2. Berger, A.S., Hojman, R., Santamarina, J.: J. Math. Phys. 28, 2949 (1987) ADSMathSciNetCrossRefGoogle Scholar
  3. Buchdahl, H.A.: Am. J. Phys. 39, 158 (1971) ADSCrossRefGoogle Scholar
  4. Centrella, J.M., Matzner, R., Rothman, T., Wilson, J.: Nucl. Phys. B 266, 171 (1986) ADSCrossRefGoogle Scholar
  5. Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998) ADSCrossRefGoogle Scholar
  6. Durgapal, M.C.: J. Phys. A 15, 2637 (1982) ADSMathSciNetCrossRefGoogle Scholar
  7. Durgapal, M.C., et al.: Astrophys. Space Sci. 102, 49 (1984) ADSCrossRefGoogle Scholar
  8. Ehlers, J., Rosenblum, A., Goldberg, J.N., Havas, P.: Astrophys. J. 208, 77 (1976) ADSCrossRefGoogle Scholar
  9. Lake, K.: Phys. Rev. D 67, 104015 (2003) ADSMathSciNetCrossRefGoogle Scholar
  10. Lindblom, L.: Phys. Rev. D 58, 024008 (1998) ADSCrossRefGoogle Scholar
  11. Mars, M., Mercè Martín-Prats, M., Senovilla, J.M.M.: Phys. Lett. A 218, 147 (1996) ADSCrossRefGoogle Scholar
  12. Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 334, 145–154 (2011) ADSCrossRefGoogle Scholar
  13. Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 337, 151–160 (2012) ADSCrossRefGoogle Scholar
  14. Musgrave, P., Lake, K.: Class. Quantum Gravity 13, 1885 (1996) ADSCrossRefGoogle Scholar
  15. Pant, N.: Astrophys. Space Sci. 331, 633–644 (2011) ADSCrossRefGoogle Scholar
  16. Pant, N., Mehta, R.N., Pant, M.J.: Astrophys. Space Sci. 330, 353–359 (2010) ADSCrossRefGoogle Scholar
  17. Pollney, D., Pelavas, N., Musgrave, P., Lake, K.: Comput. Phys. Commun. 115, 381 (1998) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mathematical & Physical Sciences, College of Arts & SciencesUniversity of NizwaNizwaOman
  2. 2.Department of MathematicsJaypee Institute of Information Technology UniversityNoidaIndia

Personalised recommendations