Astrophysics and Space Science

, Volume 355, Issue 2, pp 353–359 | Cite as

Exact solutions in (2+1)-dimensional anti-de Sitter space-time admitting a linear or non-linear equation of state

  • Ayan Banerjee
  • Farook Rahaman
  • Kanti Jotania
  • Ranjan Sharma
  • Mosiur Rahaman
Original Article

Abstract

Gravitational analyzes in lower dimensions has become a field of active research interest ever since Bañados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69:1849, 1992) proved the existence of a black hole solution in (2+1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2+1)-dimensional anisotropic star in anti-de Sitter background space-time which have been obtained by assuming that the equation of state (EOS) describing the material composition of the star could either be linear or non-linear in nature. By matching the interior solution to the BTZ exterior metric with zero spin, we have demonstrated that the solutions provided here are regular and well-behaved at the stellar interior.

Keywords

Star solution (2+1)-Dimensional gravity 

Notes

Acknowledgements

FR, KJ and RS would like to thank the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, for awarding Visiting Research Associateship. FR is grateful to UGC, Govt. of India, for financial support under its Research Award Scheme.

References

  1. Bañados, M., Teitelboim, C., Zanelli, J.: Phys. Rev. Lett. 69, 1849 (1992) ADSMathSciNetCrossRefGoogle Scholar
  2. Banerjee, A., Rahaman, F., Jotania, K., Sharma, R., Karar, I.: Gen. Relativ. Gravit. 45, 717 (2013) ADSCrossRefGoogle Scholar
  3. Cataldo, M., Salgado, P.: Phys. Rev. D 54, 2971 (1996) ADSMathSciNetCrossRefGoogle Scholar
  4. Cruz, N., Zanelli, J.: Class. Quantum Gravity 12, 975 (1995) ADSCrossRefGoogle Scholar
  5. Cruz, N., Olivares, M., Villanueva, J.R.: Gen. Relativ. Gravit. 37, 667 (2005) ADSCrossRefGoogle Scholar
  6. Finch, M.R., Skea, J.E.F.: Class. Quantum Gravity 6, 467 (1989) ADSCrossRefGoogle Scholar
  7. García, A.A., Campuzano, C.: Phys. Rev. D 67, 064014 (2003) ADSCrossRefGoogle Scholar
  8. Ponce de León, J.: Gen. Relativ. Gravit. 25, 1123 (1993) ADSCrossRefGoogle Scholar
  9. Rahaman, F., Kuhfittig, K.P.K.F., Bhui, B.C., Rahaman, M., Ray, S., Mondal, U.F.: Phys. Rev. D 87, 084014 (2013) ADSCrossRefGoogle Scholar
  10. Sá, P.M.: Phys. Lett. B 467, 40 (1999) ADSMathSciNetCrossRefGoogle Scholar
  11. Sharma, R., Rahaman, F., Karar, I.: Phys. Lett. B 704, 1 (2011) ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Ayan Banerjee
    • 1
  • Farook Rahaman
    • 1
  • Kanti Jotania
    • 2
  • Ranjan Sharma
    • 3
  • Mosiur Rahaman
    • 4
  1. 1.Department of MathematicsJadavpur UniversityKolkataIndia
  2. 2.Department of Physics, Faculty of ScienceThe M. S. University of BarodaVadodaraIndia
  3. 3.Department of PhysicsP. D. Women’s CollegeJalpaiguriIndia
  4. 4.Department of MathematicsMeghnad Saha Institute of TechnologyKolkataIndia

Personalised recommendations