Advertisement

Astrophysics and Space Science

, Volume 355, Issue 2, pp 225–232 | Cite as

Finite amplitude solitary structures of coupled kinetic Alfven-acoustic waves in dense plasmas

  • A. Sabeen
  • H. A. Shah
  • W. Masood
  • M. N. S. Qureshi
Original Article

Abstract

In this paper, we have investigated the nonlinear propagating coupled Kinetic Alfven-acoustic waves in a low beta degenerate quantum plasma in the presence of trapped Fermi electrons using the quantum hydrodynamic (QHD) model. By using the two potential theory and the Sagdeev potential approach, we have investigated the formation of solitary structures for coupled kinetic Alfven-acoustic waves in the presence of quantum mechanically trapped electrons. We have shown that there are regions of propagation and non-propagation for such solitary structures. We have also highlighted the differences between the classical and quantum mechanically trapped electrons. Interestingly, it has been found that the nature of the nonlinearity for the quantum mechanically trapped electrons is different from its classical counterpart. The results presented here may have applications in white dwarf asteroseismology as well as next generation laser-plasma experiments where low beta plasma condition is met.

Keywords

Kinetic Alfven waves Quantum trapping QHD model 

Notes

Acknowledgement

This research was supported by the Higher Education Commission (HEC) grant No. 20-2595/NRPU/R&D/HEC/13.

References

  1. Abbasi, H., Tsintsadze, N.L., Tshakaya, D.D.: Phys. Plasmas 6, 2373 (1999)ADSCrossRefGoogle Scholar
  2. Abrahams, E., Kravchenko, S.V., Sarachik, M.P.: Rev. Mod. Phys. 73, 251 (2001)ADSCrossRefGoogle Scholar
  3. Ang, L.K., et al.: Phys. Plasmas 13, 056701 (2006)ADSCrossRefGoogle Scholar
  4. Ayub, M., Shah, H.A., Qureshi, M.N.S.: Phys. Scr. 84, 045505 (2011)ADSCrossRefGoogle Scholar
  5. Azechi, H., et al.: Laser Part. Beams 9, 193 (1991)ADSCrossRefGoogle Scholar
  6. Azechi, H., et al.: Plasma Phys. Control. Fusion 48, B267 (2006)CrossRefGoogle Scholar
  7. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Nature 424, 824 (2003)ADSCrossRefGoogle Scholar
  8. Becker, K.H., Schoenbach, K.H., Eden, J.G.: J. Phys. D 39, R55 (2006)ADSCrossRefGoogle Scholar
  9. Chabrier, G., Douchin, F., Potekhin, A.Y.J.: Phys. Condens. Matter 14, 9133 (2002)ADSCrossRefGoogle Scholar
  10. Chang, D.E., et al.: Phys. Rev. Lett. 97, 053002 (2006)ADSCrossRefGoogle Scholar
  11. Craighead, H.G.: Science 290, 1532 (2000)ADSCrossRefGoogle Scholar
  12. Cramer, N.F.: The Physics of Alfven Waves. Wiley-VCH, Berlin (2001)CrossRefGoogle Scholar
  13. Crouseilles, N., Hervieux, P.A., Manfredi, G.: Phys. Rev. B 78, 155412 (2008)ADSCrossRefGoogle Scholar
  14. Danson, C.N., Brummitt, P.A., Clarke, R.J., Collier, J.L., Fell, B., Frackiewicz, A., Hancock, S., Hawkes, S., Hernandez-Gomez, C., Holligan, P., Hutchinson, M.H.R., Kidd, A., Lester, W.J., Musgrave, I.O., Neely, D., Neville, D.R., Norreys, P.A., Pepler, D.A., Reason, C.J., Shaikh, W., Winstone, T.B., Wyatt, R.W.W., Wyborn, B.E.: Nucl. Fusion 44, S239 (2004)ADSCrossRefGoogle Scholar
  15. Eliasson, B., Shukla, P.K.: Europhys. Lett. 97, 15001 (2012)ADSCrossRefGoogle Scholar
  16. Erokhin, N.S., Zolnikova, N.N., Mikhailovskaya, L.A.: Fiz. Plazmy 22, 137 (1996)Google Scholar
  17. Faure, J., Glinec, Y., Pukhov, A., Kiselev, S., Gordienko, S., Lefebvre, E., Rousseau, J.P., Burgy, F., Malka, V.: Nature (London) 431, 542 (2004)ADSCrossRefGoogle Scholar
  18. Fortney, J.J., et al.: Phys. Plasmas 16, 041003 (2009)ADSCrossRefGoogle Scholar
  19. Geddes, C.G.R., Toth, Cs., Van Tilborg, J., Esarey, E., Schroeder, C.B., Bruhwiler, D., Nieter, C., Cary, J., Leemans, W.P.: Nature (London) 431, 538 (2004)ADSCrossRefGoogle Scholar
  20. Gerstner, E.: Nature (London) 446, 16 (2007)ADSCrossRefGoogle Scholar
  21. Ghosh, S.S., Lakhina, G.S.: Nonlinear Process. Geophys. 11, 219 (2004)ADSCrossRefGoogle Scholar
  22. Guillot, T.: Science 286, 72 (1999)ADSCrossRefGoogle Scholar
  23. Gurevich, A.V.: Zh. Eksp. Teor. Fiz. 53, 953 (1967)Google Scholar
  24. Haas, F.: Phys. Plasmas 12, 062117 (2005)ADSCrossRefGoogle Scholar
  25. Haas, F., Garcia, L.G., Goedert, J., Manfredi, G.: Phys. Plasmas 10, 3858 (2003)ADSCrossRefGoogle Scholar
  26. Hansen, C., Reimann, A.B., Fajans, J.: Phys. Plasmas 3, 1820 (1996)ADSCrossRefGoogle Scholar
  27. Hasegawa, A., Chen, L.: Phys. Rev. Lett. 35, 370 (1975)ADSCrossRefGoogle Scholar
  28. Hasegawa, A., Mima, K.: Phys. Rev. Lett. 37, 690 (1976)ADSCrossRefGoogle Scholar
  29. Hooker, C.J., Collier, J.L., Chekhlov, O., Clarke, R., Divall, E., Ertel, K., Fell, B., Foster, P., Hancock, S., Langley, A., Neely, D., Smith, J., Wyborn, B.: J. Phys. IV 133, 673 (2006)Google Scholar
  30. Hu, S.X., Keitel, C.H.: Phys. Rev. Lett. 83, 4709 (1999)ADSCrossRefGoogle Scholar
  31. Kadomtsev, B.B.: Plasma Turbulence. Academic Press, New York (1965)Google Scholar
  32. Kakati, H., Goswami, K.S.: Phys. Plasmas 5, 4229 (1998)ADSCrossRefGoogle Scholar
  33. Kodama, R., Norreys, P.A., Mima, K., Dangor, A.E., Evans, R.G., Fujita, H., Kitagawa, Y., Krushelnick, K., Miyakoshi, T., Miyanaga, N., Norimastsu, T., Rose, S.J., Shozaki, T., Shigemori, K., Sunahara, A., Tampo, M., Tanaka, K.A., Toyama, Y., Yamanaka, T., Zepf, M.: Nature (London) 412, 798 (2001)ADSCrossRefGoogle Scholar
  34. Koester, D., Chanmugam, G.: Rep. Prog. Phys. 53, 837 (1990)ADSCrossRefGoogle Scholar
  35. Landau, L.D., Lifshitz, E.M.: Physical Kinetics. Pergamon, New York (1981)Google Scholar
  36. Lau, Y.Y., et al.: Phys. Rev. Lett. 66, 1446 (1991)ADSCrossRefGoogle Scholar
  37. Lee, H.J., et al.: Phys. Rev. Lett. 102, 115001 (2009)ADSCrossRefGoogle Scholar
  38. Lindl, J.: Phys. Plasmas 2, 3933 (1995)ADSCrossRefGoogle Scholar
  39. Magnus, W.C.J., Schoenmaker, W.J.: Quantum Transport in Submicron Devices. Springer, Berlin (2002)CrossRefGoogle Scholar
  40. Malkin, V.M., Fisch, N.J., Wurtele, J.S.: Phys. Rev. E 75, 026404 (2007)ADSCrossRefGoogle Scholar
  41. Manfredi, G.: Fields Inst. Commun. 46, 263 (2005)Google Scholar
  42. Mangles, S.P.D., Murphy, C.D., Najmudin, Z., Thomas, A.G.R., Collier, J.L., Dangor, A.E., Divall, E.J., Foster, P.S., Gallacher, J.G., Hooker, C.J., Jaroszynski, D.A., Langley, A.J., Mori, W.B., Norreys, P.A., Tsung, F.S., Viskup, R., Walton, B.R., Krushelnick, K.: Nature (London) 431, 535 (2004)ADSCrossRefGoogle Scholar
  43. Marklund, M., Shukla, P.K.: Rev. Mod. Phys. 78, 591 (2006)ADSCrossRefGoogle Scholar
  44. Marklund, M., Stenflo, L., Shukla, P.K., Brodin, B.: Phys. Plasmas 12, 072111 (2005)ADSCrossRefGoogle Scholar
  45. Marklund, M., et al.: Europhys. Lett. 84, 17006 (2008)ADSCrossRefGoogle Scholar
  46. Markovich, P.A., et al.: Semiconductor Equation. Springer, Wien (1990)CrossRefGoogle Scholar
  47. Masood, W., Mushtaq, A.: Phys. Plasmas 15, 022306 (2008)ADSCrossRefGoogle Scholar
  48. Mushtaq, A., Shah, H.A.: Phys. Plasmas 13, 012303 (2006)ADSCrossRefGoogle Scholar
  49. Norreys, P.A., et al.: Phys. Plasmas 16, 041002 (2009)ADSCrossRefGoogle Scholar
  50. Perry, M.D., Pennington, D., Stuart, B.C., Tietbohl, G., Britten, J.A., Brown, C., Herman, S., Golick, B., Kartz, M., Miller, J., Powell, H.T., Vergino, M., Yanovsky, V.: Opt. Lett. 24, 160 (1999)ADSCrossRefGoogle Scholar
  51. Piovella, N., et al.: Phys. Rev. Lett. 100, 044801 (2008)ADSCrossRefGoogle Scholar
  52. Pukhov, A., Meyer-ter-Vehn, J.: Appl. Phys. B, Lasers Opt. 74, 355 (2002)ADSCrossRefGoogle Scholar
  53. Ryutov, D.D., Remington, B.A.: Phys. Plasmas 10, 2629 (2003)ADSMathSciNetCrossRefGoogle Scholar
  54. Ryutov, D.D., Drake, R.P., Kane, J.O., Liang, E., Remington, B.A., Wood-Vasey, W.M.: Astrophys. J. 518, 821 (1999)ADSCrossRefGoogle Scholar
  55. Ryutov, D.D., Remington, B.A., Robey, H.F., Drake, R.P.: Phys. Plasmas 8, 1804 (2001)ADSCrossRefGoogle Scholar
  56. Sagdeev, R.Z.: Review of Plasma Physics, vol. 4. Consultants Bureau, New York (1996)Google Scholar
  57. Serbeto, A., et al.: Phys. Plasmas 15, 013110 (2008)ADSCrossRefGoogle Scholar
  58. Shah, H.A., Qureshi, M.N.S., Tsintsadze, N.L.: Phys. Plasmas 17, 032312 (2010)ADSCrossRefGoogle Scholar
  59. Shah, H.A., Iqbal, M.J., Tsintsadze, N.L., Masood, W., Qureshi, M.N.S.: Phys. Plasmas 19, 092304 (2012)ADSCrossRefGoogle Scholar
  60. Shah, H.A., Masood, W., Ali, Z.: Phys. Plasmas 20, 032301 (2013)ADSCrossRefGoogle Scholar
  61. Shapiro, S.L., Teukolsky, S.: A Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (2004)Google Scholar
  62. Shpatakovskaya, G.V.: Zh. Eksp. Teor. Fiz. 129, 533 (2006)Google Scholar
  63. Shukla, P.K., Eliasson, B.: Phys. Rev. Lett. 100, 036801 (2008)ADSCrossRefGoogle Scholar
  64. Siddiqui, H., Shah, H.A., Tsintsadze, N.L.: J. Fusion Energy 27, 216 (2008)ADSCrossRefGoogle Scholar
  65. Smith, R.A.: Bull. Am. Phys. Soc. 53, 221 (2008)Google Scholar
  66. Stasiewicz, K., Bellan, P., Chaston, C., Kletzing, C., Lysak, R., Maggs, J., Pokhotelov, O., Seyler, C., Shukla, P., Stenflo, L., Streltsov, A., Wahlund, J.E.: Space Sci. Rev. 92, 423 (2000)ADSCrossRefGoogle Scholar
  67. Strickland, D., Mourou, G.: Opt. Commun. 56, 219 (1985)ADSCrossRefGoogle Scholar
  68. Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Wood-worth, J., Campbell, E.M., Perry, M.D., Mason, R.J.: Phys. Plasmas 1, 1626 (1994)ADSCrossRefGoogle Scholar
  69. Tabak, M., et al.: Phys. Plasmas 12, 057305 (2005)ADSCrossRefGoogle Scholar
  70. Tajima, T., Dawson, J.M.: Phys. Rev. Lett. 43, 267 (1979)ADSCrossRefGoogle Scholar
  71. Wu, D.J.: Prog. Phys. 30, 101 (2010)Google Scholar
  72. Yanovsky, V., Chvykov, V., Kalinchenko, G., Rousseau, P., Planchon, T., Matsuoka, T., Maksimchuk, A., Nees, J., Cheriaux, G., Mourou, G., Krushelnick, K.: Opt. Express 16, 2109 (2008)ADSCrossRefGoogle Scholar
  73. Yinhua, C., Wei, L., Yu, M.Y.: Phys. Rev. E 61, 809 (2000)ADSCrossRefGoogle Scholar
  74. Yu, M.Y., Shukla, P.K.: Phys. Fluids 21, 1457 (1978)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. Sabeen
    • 1
  • H. A. Shah
    • 2
  • W. Masood
    • 3
    • 4
  • M. N. S. Qureshi
    • 1
  1. 1.Department of PhysicsGC UniversityLahorePakistan
  2. 2.Department of PhysicsForman Christian CollegeLahorePakistan
  3. 3.COMSATS Institute of Information TechnologyIslamabadPakistan
  4. 4.National Center for Physics (NCP)IslamabadPakistan

Personalised recommendations