Astrophysics and Space Science

, Volume 355, Issue 2, pp 213–223 | Cite as

Equilibria near asteroids for solar sails with reflection control devices

Original Article

Abstract

Solar sails are well-suited for long-term, multiple-asteroid missions. The dynamics of solar sails near an asteroid have not yet been studied in detail. In this paper, out-of-plane artificial equilibria in a Sun-asteroid rotating frame and hovering points in a body-fixed rotating frame are studied (using a solar sail equipped with reflection control devices). First, the dynamics and the stability of out-of-plane artificial equilibria are studied as an elliptical restricted three body problem. Next, the body-fixed hovering problem is discussed as a two-body problem. Hovering flight is only possible for certain values of the latitude of the asteroid’s orbit. In addition, the feasible range of latitudes is determined for each landmark on the asteroid’s surface. The influence of the sail lightness number on the feasible range is also illustrated. Several special families of hovering points are discussed. These points include points above the equator and poles and points with an altitude equal to the radius of the synchronous orbit. In both of these types of problems, the solar sail (equipped with reflection control devices) can equilibrate over a large range of locations.

Keywords

Solar sail Reflection Control Device Asteroid Artificial equilibrium Body-fixed hovering 

Notes

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (No. 11272004 and No. 41174025).

References

  1. Aliasi, G., Mengali, G., Quarta, A.A.: Artificial Lagrange points for solar sail with electrochromic material panels. J. Guid. Control Dyn. 36(5), 1544–1550 (2013)ADSCrossRefGoogle Scholar
  2. Baoyin, H.X., McInnes, C.R.: Solar sail equilibria in the elliptical restricted three-body problem. J. Guid. Control Dyn. 29(3), 538–543 (2006)ADSCrossRefGoogle Scholar
  3. Broschart, S.B., Scheeres, D.J.: Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa. J. Guid. Control Dyn. 28(2), 343–354 (2005)ADSCrossRefGoogle Scholar
  4. Curtis, S., Mica, J., Nuth, J., Marr, G., Rilee, M., Bhat, M.: Autonomous nano-technology swarm. In: 51st International Astronautical Congress, Rio de Janeiro, Brazil (2000). Paper 00-Q.5.08Google Scholar
  5. Curtis, S.A., Rilee, M.L., Clark, P.E., Marr, G.C.: Use of swarm intelligence in spacecraft constellations for the resource exploration of the asteroid belt. In: Proceedings of the 3rd International Workshop on Satellite Constellations and Formation Flying, Pisa, Italy (2003)Google Scholar
  6. Dachwald, B.: Optimization of interplanetary solar sailcraft trajectories using evolutionary neurocontrol. J. Guid. Control Dyn. 27(1), 66–72 (2004)ADSCrossRefGoogle Scholar
  7. Dachwald, B., Boehnhardt, H., et al.: Gossamer roadmap technology reference study for a multiple NEO rendezvous mission. In: Macdonald, M. (ed.) Advances in Solar Sailing. Springer Praxis Books: Astronautical Engineering, Vol. 1, Germany, vol. 1, pp. 211–216 (2013). 3rd International Symposium on Solar Sailing, Glasgow, United KingdomGoogle Scholar
  8. Gong, S.P., Li, J.F.: Orbital motions of a solar sail around the L 2 earth-moon libration point. J. Guid. Control Dyn. 37(4), 349–1356 (2014a)MathSciNetCrossRefGoogle Scholar
  9. Gong, S.P., Li, J.F.: Solar sail halo orbit control using reflectivity control devices. Trans. Jpn. Soc. Aeronaut. 57(5), 279–288 (2014b)CrossRefGoogle Scholar
  10. Gong, S.P., Baoyin, H.X., Li, J.F.: Solar sail formation flying around displaced solar orbits. J. Guid. Control Dyn. 30(4), 1148–1152 (2007)ADSCrossRefGoogle Scholar
  11. Gong, S.P., Li, J.F., Gao, Y.F.: Solar sail time-optimal interplanetary transfer trajectory design. Res. Astron. Astrophys. 11(8), 981–996 (2011)ADSCrossRefGoogle Scholar
  12. Heiligers, J., Ceriotti, M., McInnes, C.R., Biggs, J.D.: Mission analysis and systems design of a near-term and far-term pole-sitter mission. In: 1st IAA Conference on Dynamics and Control of Space Systems, Porto (2012)Google Scholar
  13. Macdonald, M., Hughes, G.W., McInnes, C.R., Aleksander Lyngvi, A., Falkner, P., Atzei, A.: Solar Polar Orbiter: a solar sail technology reference study. J. Spacecr. Rockets 43(5), 960–972 (2006)ADSCrossRefGoogle Scholar
  14. McInnes, C.R.: Solar sail mission applications for non-Keplerian orbits. Acta Astronaut. 45(4–9), 567–575 (1999)ADSCrossRefGoogle Scholar
  15. McInnes, C.R., Macdonald, M., Angelopous, V., Alexander, V.: GEOSAIL: exploring the geomagnetic tail using a small solar sail. J. Spacecr. Rockets 38(4), 622–629 (2001)ADSCrossRefGoogle Scholar
  16. Mimasu, Y., Yamaguchi, T., Matsumoto, M., Nakamiya, M., Funase, R., Kawaguchi, J.: Spinning solar sail orbit steering via spin rate control. Adv. Space Res. 48(11), 1810–1821 (2011)ADSCrossRefGoogle Scholar
  17. Morrow, E., Scheeres, D.J., Lubin, D.: Solar sail orbit operations at asteroids. J. Spacecr. Rockets 38(2), 279–286 (2001)ADSCrossRefGoogle Scholar
  18. Mu, J.S., Gong, S.P., Li, J.F.: Reflectivity-controlled solar sail formation flying for magnetosphere mission. Aerosp. Sci. Technol. 30(1), 339–348 (2013)CrossRefGoogle Scholar
  19. Mu, J.S., Gong, S.P., Li, J.F.: Coupled control of reflectivity modulated solar sail for GeoSail formation flying. J. Guid. Control Dyn. (2014). doi: 10.2514/1.G000117
  20. Sawai, S., Scheeres, D.J., Broschart, S.: Control of hovering spacecraft using altimetry. J. Guid. Control Dyn. 25(4), 786–795 (2002)ADSCrossRefGoogle Scholar
  21. Szebehely, V.: Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press, New York/London (1967)MATHGoogle Scholar
  22. Tsuda, Y., Mori, O., Funase, R., Sawada, H., Yamamoto, T., Saiki, T., Endo, T., Kawaguchi, J.: Flight status of IKAROS deep space solar sail demonstrator. Acta Astronaut. 69(9–10), 833–840 (2011)ADSCrossRefGoogle Scholar
  23. Williams, T., Abate, M.: Capabilities of furlable solar sails for asteroid proximity operations. J. Spacecr. Rockets 46(5), 967–975 (2009)ADSCrossRefGoogle Scholar
  24. Zhukov, A.N., Lebedev, V.N.: Variational problem of transfer between heliocentric circular orbits by means of a solar sail. Cosm. Res. 2, 41–44 (1964)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of AerospaceTsinghua UniversityBeijingChina

Personalised recommendations