Astrophysics and Space Science

, Volume 355, Issue 1, pp 195–202 | Cite as

Dynamics of magnetized string cosmological model in f(R,T) gravity theory

Original Article

Abstract

The spatially homogeneous and anisotropic Bianchi type V cosmological solutions of massive string have been investigated in the presence of a magnetic field within the framework of f(R,T) gravity theory. With the help of the hybrid expansion law for the average scale factor a cosmological model is obtained. It is shown that the universe exhibits transition from deceleration to acceleration. We also find that Bianchi type V model is anisotropic at the early stage of evolution of the universe and become isotropic for large time. We also check the stability of solutions through cosmological perturbation. The physical and kinematical behaviors of the model are also studied.

Keywords

Bianchi type V space-time Perfect fluid Magnetic field Massive string f(R,T) gravity Hybrid expansion law 

Notes

Acknowledgements

The authors are extremely grateful to the anonymous referee for his fruitful suggestions to improve the quality of the standard. The author S. Chandel is thankful to CSIR, India, for providing financial assistance.

References

  1. Adhav, K.S.: Astrophys. Space Sci. 339, 365 (2012)ADSCrossRefGoogle Scholar
  2. Ahmed, N., Pradhan, A.: Int. J. Theor. Phys. 53, 289 (2014)CrossRefGoogle Scholar
  3. Akarsu, O., et al.: (2014). arXiv:1307.4911
  4. Alam, U., et al.: Mon. Not. R. Astron. Soc. 354, 275 (2004)ADSCrossRefGoogle Scholar
  5. Allemandi, G., et al.: Phys. Rev. D 72, 63505 (2005)ADSCrossRefGoogle Scholar
  6. Astashenok, A.V., et al.: (2012). arXiv:1201.4056v2 [gr-qc]
  7. Azizi, T.: Int. J. Theor. Phys. 52, 3486 (2013)CrossRefGoogle Scholar
  8. Bamba, K., et al.: Astrophys. Space Sci. 342, 155 (2012)ADSCrossRefGoogle Scholar
  9. Banerjee, A., et al.: Pramana J. Phys. 34, 1 (1990)ADSCrossRefGoogle Scholar
  10. Bento, M.C., et al.: Phys. Rev. D 66, 043507 (2002)ADSCrossRefGoogle Scholar
  11. Bronnikov, K.A., et al.: Class. Quantum Gravity 21, 3389 (2004)ADSCrossRefGoogle Scholar
  12. Caldwell, R.R., et al.: Phys. Rev. Lett. 91, 071301 (2003)ADSCrossRefGoogle Scholar
  13. Chakraborty, S.: Gen. Relativ. Gravit. 45, 2039 (2013)ADSCrossRefGoogle Scholar
  14. Chandel, S., Ram, S.: Indian J. Phys. 87, 1283 (2013)ADSCrossRefGoogle Scholar
  15. Chaubey, R., Shukla, A.K.: Astrophys. Space Sci. 343, 415 (2013)ADSCrossRefGoogle Scholar
  16. Chen, C.M., Kao, W.F.: Phys. Rev. D 64, 124019 (2001). 2001ADSMathSciNetCrossRefGoogle Scholar
  17. Chiba, T., et al.: Phys. Rev. D 62, 023511 (2000)ADSCrossRefGoogle Scholar
  18. Elizalde, E., et al.: Phys. Rev. D 70, 043539 (2004)ADSCrossRefGoogle Scholar
  19. Goetz, G.: J. Math. Phys. 31, 2683 (1990)ADSMathSciNetCrossRefGoogle Scholar
  20. Harko, T., et al.: Phys. Rev. D 75, 104016 (2007)ADSMathSciNetCrossRefGoogle Scholar
  21. Katore, S.D., Shaikh, A.Y.: Prespacetime J. 3, 1087 (2012)Google Scholar
  22. Kibble, T.W.B., Turok, N.: Phys. Lett. B 116, 141 (1982)ADSCrossRefGoogle Scholar
  23. Kiran, M., Reddy, D.R.K.: Astrophys. Space Sci. 346, 521 (2013)ADSCrossRefGoogle Scholar
  24. Krori, K.D., et al.: Gen. Relativ. Gravit. 22, 123 (1990)ADSCrossRefGoogle Scholar
  25. Kumar, S.: Gravit. Cosmol. 19, 284 (2013)ADSMathSciNetCrossRefGoogle Scholar
  26. Letelier, P.S.: Phys. Rev. D 28, 2414 (1983)ADSMathSciNetCrossRefGoogle Scholar
  27. Lichnerovich, A.: Relativistic Hydrodynamics and Magnetohydrodynamics p. 13. Benjamin, New York (1967)Google Scholar
  28. Maartens, R.: Pramana J. Phys. 55, 575 (2000)ADSCrossRefGoogle Scholar
  29. Martin, J.: Mod. Phys. Lett. A 23, 1252 (2008)ADSCrossRefGoogle Scholar
  30. Matraverse, D.R.: Gen. Relativ. Gravit. 20, 279 (1988)ADSCrossRefGoogle Scholar
  31. Netterfield, C.B., et al.: Astrophys. J. 571, 604 (2002)ADSCrossRefGoogle Scholar
  32. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59 (2011)ADSMathSciNetCrossRefGoogle Scholar
  33. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)MathSciNetCrossRefGoogle Scholar
  34. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)ADSMathSciNetCrossRefGoogle Scholar
  35. Padmanabhan, T., Chaudhary, T.R.: Phys. Rev. D 66, 081301 (2003)ADSCrossRefGoogle Scholar
  36. Perlmutter, S., et al.: Astrophys. J. 517, 565–586 (1999)ADSCrossRefGoogle Scholar
  37. Pradhan, A., et al.: Astrophys. Space Sci. 246, 65 (1997)CrossRefGoogle Scholar
  38. Ram, S., Singh, J.K.: Gen. Relativ. Gravit. 270, 1207 (1995)ADSCrossRefGoogle Scholar
  39. Ram, S., et al.: Astrophys. Space Sci. 347, 389 (2013a)ADSCrossRefGoogle Scholar
  40. Ram, S., et al.: Pramana J. Phys. 81, 67 (2013b)ADSCrossRefGoogle Scholar
  41. Rao, V.U.M., Nilima, D.: Astrophys. Space Sci. 345, 427 (2013)ADSCrossRefGoogle Scholar
  42. Reddy, D.R.K., et al.: Astrophys. Space Sci. 342, 249 (2012a)ADSCrossRefGoogle Scholar
  43. Reddy, D.R.K., et al.: Int. J. Theor. Phys. 51, 3222 (2012b)CrossRefGoogle Scholar
  44. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  45. Saha, S., Rikhvitsky, V.: Physica D 219, 168 (2006)ADSMathSciNetCrossRefGoogle Scholar
  46. Sahni, V., Strarobinsky, A.: Int. J. Mod. Phys. D 12, 2015 (2006)Google Scholar
  47. Sahni, V., et al.: Phys. Rev. D 78, 103502 (2008)ADSCrossRefGoogle Scholar
  48. Shamir, M.F., et al.: (2012). arXiv:1207.0708v1
  49. Sharif, M., Yousaf, Z.: Astrophys. Space Sci. 352, 943 (2014a)ADSCrossRefGoogle Scholar
  50. Sharif, M., Yousaf, Z.: Astrophys. Space Sci. 352, 321 (2014b)ADSCrossRefGoogle Scholar
  51. Sharif, M., Yousaf, Z.: Astropart. Phys. 56, 19 (2014c)ADSCrossRefGoogle Scholar
  52. Sharif, M., Yousaf, Z.: Astrophys. Space Sci. (2014d). doi: 10.1007/s10509-014-2093-61
  53. Sharif, M., Yousaf, Z.: Astrophys. Space Sci. (2014e). doi: 10.1007/s10509-014-2113-6
  54. Sharif, M., Zubir, M.: Int. J. Mod. Phys. D 19, 1957 (2010)ADSCrossRefGoogle Scholar
  55. Sharif, M., Zubir, M.: J. Cosmol. Astropart. Phys. 21, 28 (2012)CrossRefGoogle Scholar
  56. Sharma, N.K., Singh, J.K.: Int. J. Theor. Phys. (2014). doi: 10.1007/s10773-014-2089-6
  57. Singh, J.K.: Astrophys. Space Sci. 281, 585 (2002)ADSMathSciNetCrossRefGoogle Scholar
  58. Singh, C.P., Singh, V.: Gen. Relativ. Gravit. 46, 696 (2014)CrossRefGoogle Scholar
  59. Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)ADSCrossRefGoogle Scholar
  60. Stachel, J.: Phys. Rev. D 21, 2171 (1988)ADSCrossRefGoogle Scholar
  61. Tikekar, R., et al.: Gen. Relativ. Gravit. 24, 297 (1992)MathSciNetCrossRefGoogle Scholar
  62. Vilenkin, A.: Phys. Rev. D 23, 852 (1981)ADSCrossRefGoogle Scholar
  63. Vishwakrma, R.G.: Mon. Not. R. Astron. Soc. 331, 776 (2002)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndian Institute of Technology, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations