Astrophysics and Space Science

, Volume 355, Issue 1, pp 137–145 | Cite as

A class of relativistic anisotropic charged stellar models in isotropic coordinates

Original Article


In this present paper, we present a class of static, spherically symmetric charged anisotropic fluid models of super dense stars in isotropic coordinates by considering a particular type of metric potential, a specific choice of electric field intensity E and pressure anisotropy factor Δ which involve parameters K (charge) and α (anisotropy) respectively. The solutions so obtained are utilized to construct the models for super-dense stars like neutron stars and strange quark stars. Our solutions are well behaved within the following ranges of different constant parameters: 4<n≤21.6, 0<K<0.2499, 0≤α≤0.068 and Schwarzschild parameter, 0≤u=GM/c2R≤0.334. With Δ=0 we rediscover the isotropic model of Pant et al. (Astrophys. Space Sci. 352:135, 2014) and with α=0 and K=0 we rediscover the isotropic neutral model of Murad and Pant (Astrophys. Space Sci. 350:349, 2014). It has been observed that with the increase of α maximum mass decreases. We also present models of super dense star like neutron and quark star based on the particular solution taking n=4.35, α=0.002, K=0.2062 for which u has maximum value umax=0.306. By assuming surface density ρ b =4.6888×1014 g cm−3 the resulting well behaved solution has a maximum quark star mass M=2.02 M and radius R=9.78 km; and the choice ρ b =2.7×1014 g cm−3 results charged fluid ball of maximum mass M=2.66 M and radius R=12.89 km.


General relativity Relativistic astrophysics Exact solution Reissner-Nordström Isotropic coordinates Anisotropic fluid sphere Charged fluid sphere Compact stars Relativistic stars 


  1. Bonnor, W.B.: Z. Phys. 160, 59 (1960). doi: 10.1007/BF01337478 ADSCrossRefGoogle Scholar
  2. Bonnor, W.B.: Mon. Not. R. Astron. Soc. 137, 239 (1965). doi: 10.1093/mnras/129.6.443 ADSCrossRefGoogle Scholar
  3. Bonnor, W.B., Vickers, P.A.: Gen. Relativ. Gravit. 13, 29 (1981). doi: 10.1007/BF00766295 ADSGoogle Scholar
  4. Bowers, R.L., Liang, E.P.T.: Astrophys. J. 188, 657 (1974). doi: 10.1086/152760 ADSCrossRefGoogle Scholar
  5. Brecher, K., Caporaso, G.: Nature 259, 377 (1976). doi: 10.1038/259377a0 ADSCrossRefGoogle Scholar
  6. Canuto, V.: Ann. N.Y. Acad. Sci. 302, 514 (1977). doi: 10.1111/j.1749-6632.1977.tb37069.x ADSCrossRefGoogle Scholar
  7. Canuto, V., Lodenquai, J.: Phys. Rev. C 12, 2033 (1975). doi: 10.1103/PhysRevC.12.2033 ADSCrossRefGoogle Scholar
  8. Chaisi, M., Maharaj, S.D.: Pramana J. Phys. 66(3), 609 (2006). doi: 10.1111/j.1365-2966.2006.11355.x ADSCrossRefGoogle Scholar
  9. Das, B., Ray, P.C., Radinschi, I., Rahaman, F., Ray, S.: Int. J. Mod. Phys. D 20, 1675 (2011). doi: 10.1142/S0218271811019724 ADSCrossRefGoogle Scholar
  10. Delgaty, M.S.R., Lake, K.: Comput. Phys. Commun. 115, 395 (1998). doi: 10.1016/S0010-4655(98)00130-1 ADSCrossRefGoogle Scholar
  11. Fatema, S., Murad, M.H.: Int. J. Theor. Phys. 52, 2508 (2013). doi: 10.1007/s10773-013-1538-y CrossRefGoogle Scholar
  12. Herrera, L., Ponce de Leon, J.: J. Math. Phys. 26, 2302 (1985). doi: 10.1063/1.526813 ADSMathSciNetCrossRefGoogle Scholar
  13. Herrera, L., Santos, N.O.: Phys. Rep. 286, 53 (1997). doi: 10.1016/S0370-1573(96)00042-7 ADSMathSciNetCrossRefGoogle Scholar
  14. Herrera, L., Prisco, A.D., Ospino, J., Fuenmayor, E.: J. Math. Phys. 42, 2129 (2001). doi: 10.1063/1.1364503 ADSMathSciNetCrossRefGoogle Scholar
  15. Herrera, L., Ospino, J., Prisco, A.D.: Phys. Rev. D 77, 027502 (2008). doi: 10.1103/PhysRevD.77.027502 ADSMathSciNetCrossRefGoogle Scholar
  16. Ivanov, B.V.: Phys. Rev. D 65, 104001 (2002a). doi: 10.1103/PhysRevD.65.104001 ADSMathSciNetCrossRefGoogle Scholar
  17. Ivanov, B.V.: Phys. Rev. D 65, 104011 (2002b). doi: 10.1103/PhysRevD.65.104011 ADSCrossRefGoogle Scholar
  18. Maharaj, S.D., Takisa, P.M.: Gen. Relativ. Gravit. 44, 1419 (2012). doi: 10.1007/s10714-012-1347-2 ADSCrossRefGoogle Scholar
  19. Maharaj, S.D., Sunzu, J.M., Ray, S.: Eur. Phys. J. Plus 129 (2014). doi: 10.1140/epjp/i2014-14003-9
  20. Mak, M.K., Harko, T.: Chin. J. Astron. Astrophys. 3, 248 (2002). doi: 10.1088/1009-9271/2/3/248 ADSCrossRefGoogle Scholar
  21. Mak, M.K., Harko, T.: Proc. R. Soc. Lond. A 459, 393 (2003). doi: 10.1098/rspa.2002.1014 ADSCrossRefGoogle Scholar
  22. Mak, M.K., Dobson, P.N., Harko, T.: Int. J. Mod. Phys. D 11, 207 (2002). doi: 10.1142/S0218271802001317 ADSCrossRefGoogle Scholar
  23. Maurya, S.K., Gupta, Y.K.: Phys. Scr. 86, 025009 (2012). doi: 10.1088/0031-8949/86/02/025009 ADSCrossRefGoogle Scholar
  24. Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 344, 243 (2013). doi: 10.1007/s10509-012-1302-4 ADSCrossRefGoogle Scholar
  25. Maurya, S.K., Gupta, Y.K.: Astrophys. Space Sci. 86, 025009 (2014). doi: 10.1007/s10509-014-2041-5 Google Scholar
  26. Murad, H.M., Pant, N.: Astrophys. Space Sci. 350, 349 (2014). doi: 10.1007/s10509-013-1713-x ADSCrossRefGoogle Scholar
  27. Pant, N., Fuloria, P., Tewari, B.C.: Astrophys. Space Sci. 340, 407 (2012). doi: 10.1007/s10509-012-1068-8 ADSCrossRefGoogle Scholar
  28. Pant, N., Pradhan, N., Murad, M.H.: Astrophys. Space Sci. 352, 135 (2014). doi: 10.1007/s10509-014-1904-0 ADSCrossRefGoogle Scholar
  29. Ruderman, R.: Annu. Rev. Astron. Astrophys. 10, 427 (1972). doi: 10.1146/annurev.aa.10.090172.002235 ADSCrossRefGoogle Scholar
  30. Sharma, R., Maharaj, S.D.: Mon. Not. R. Astron. Soc. 375, 1265 (2007). doi: 10.1111/j.1365-2966.2006.11355.x ADSCrossRefGoogle Scholar
  31. Stephani, H., Kramer, D., Maccallum, M., Hoenselaers, C., Helrt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2003) CrossRefMATHGoogle Scholar
  32. Stewart, B.W.: J. Phys. A, Math. Gen. 15, 2419 (1982). doi: 10.1088/0305-4470/15/8/021 ADSCrossRefGoogle Scholar
  33. Takisa, P.M., Maharaj, S.D.: Astrophys. Space Sci. 343, 569 (2013a). doi: 10.1007/s10509-012-1271-7 ADSCrossRefGoogle Scholar
  34. Takisa, P.M., Maharaj, S.D.: Gen. Relativ. Gravit. 45 (2013b). doi: 10.1007/s10714-013-1570-5
  35. Zdunik, J.L.: Astron. Astrophys. 359, 311 (2000) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Neeraj Pant
    • 1
  • N. Pradhan
    • 2
  • Mohammad Hassan Murad
    • 3
  1. 1.Mathematics DepartmentNational Defence AcademyPuneIndia
  2. 2.Physics DepartmentNational Defence AcademyPuneIndia
  3. 3.Department of Mathematics and Natural SciencesBRAC UniversityDhakaBangladesh

Personalised recommendations