Astrophysics and Space Science

, Volume 355, Issue 1, pp 69–87 | Cite as

Periodic orbits in the doubly synchronous binary asteroid systems and their applications in space missions

  • Haibin Shang
  • Xiaoyu Wu
  • Pingyuan Cui


This paper investigates the periodic motion of a particle in the doubly synchronous binary asteroid systems. Two typical doubly synchronous systems, 809 Lundia and 3169 Ostro, are discussed in detail. Under the Roche figure assumption, the two bodies of doubly synchronous system can be modeled as two triaxial ellipsoids. The Ivory’s theorem is used to derive the gravitational potential of the system. Then, a global numerical method, which combines grid searching and differential correction, is developed for systematically searching periodic orbits in the doubly synchronous systems. A total of 30 and 28 families of periodic orbits around Lundia and Ostro are found, respectively. Furthermore, on the basis of the analysis of morphology, stabilities and invariant manifolds, the potential applications of these periodic orbit families are studied. Several quasi-circular orbit families with low instability index are found to be suitable for the observation of the two typical binary systems. The invariant manifolds of some periodic orbits near the equilibrium points can provide the fuel-free trajectories to achieve the ballistic landing to the surface of the asteroids and transfer between the binary asteroids.


Binary asteroids Doubly synchronous system Periodic orbits Invariant manifold 



This work was supported by the National Basic Research Program of Chain (“973” Program) (Grant No. 2012CB720000), The National Natural Science Foundation of China (Grant No. 11102021).


  1. Baoyin, H., McInnes, C.R.: Trajectories to and from the Lagrange points and the primary body surfaces. J. Guid. Control Dyn. 29(4), 998–1003 (2006) ADSCrossRefGoogle Scholar
  2. Behrend, R., et al.: Four new binary minor planets: (854) Frostia, (1089) Tama, (1313) Berna, (4492) Debussy. Astron. Astrophys. 446, 1177–1184 (2006) ADSCrossRefGoogle Scholar
  3. Bellerose, J., Scheeres, D.J.: Restricted full three-body problem: application to binary system 1999 KW4. J. Guid. Control Dyn. 31(1), 162–171 (2008a) ADSCrossRefGoogle Scholar
  4. Bellerose, J., Scheeres, D.J.: Dynamics and control for surface exploration of small bodies. In: Proceedings of AIAA/AAS 2008 Astrodynamics Specialist Conference, pp. 18–21 (2008b) Google Scholar
  5. Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium, p. 43. Yale University Press, New Haven (1969) MATHGoogle Scholar
  6. Descamps, P.: Roche figures of doubly synchronous asteroids. Planet. Space Sci. 56(14), 1839–1846 (2008) ADSCrossRefGoogle Scholar
  7. Descamps, P., et al.: Figure of the double Asteroid 90 Antiope from adaptive optics and lightcurve observations. Icarus 187(2), 482–499 (2007a) ADSCrossRefGoogle Scholar
  8. Descamps, P., et al.: Nature of the small main belt Asteroid 3169 Ostro. Icarus 189(1), 362–369 (2007b) ADSCrossRefGoogle Scholar
  9. Descamps, P., et al.: New determination of the size and bulk density of the binary Asteroid 22 Kalliope from observations of mutual eclipses. Icarus 196(2), 578–600 (2008) ADSCrossRefGoogle Scholar
  10. Dichmann, D.J., Doedel, E.J., Paffenroth, R.C.: The computation of periodic solutions of the 3-body problem using the numerical continuation software AUTO. In: Libration Point Orbits and Applications, pp. 429–488 (2003) Google Scholar
  11. Gong, S.-p., et al.: Lunar landing trajectory design based on invariant manifold. Appl. Math. Mech. 28, 201–207 (2007) MathSciNetCrossRefMATHGoogle Scholar
  12. Helfenstein, P., et al.: Galileo photometry of asteroid 243 Ida. Icarus 120(1), 48–65 (1996) ADSCrossRefGoogle Scholar
  13. Hénon, M.: Vertical stability of periodic orbits in the restricted problem. Celest. Mech. Dyn. Astron. 8(2), 269–272 (1973) CrossRefMATHGoogle Scholar
  14. Herrera-Sucarrat, E., Palmer, P.L., Roberts, R.M.: Asteroid observation and landing trajectories using invariant manifolds. J. Guid. Control Dyn. 37(3), 907–920 (2014) ADSCrossRefGoogle Scholar
  15. Koon, W.S., et al.: Dynamical systems. the three-body problem and space mission design., 1167–1181 (2000) Google Scholar
  16. Kryszczyńska, A., et al.: New binary asteroid 809 Lundia. Astron. Astrophys. 501, 769–776 (2009) ADSCrossRefGoogle Scholar
  17. Lo, M.W., Parker, J.S.: Unstable resonant orbits near earth and their applications in planetary missions. Paper AIAA 5304 (2004) Google Scholar
  18. Margot, J.-L., et al.: Binary asteroids in the near-Earth object population. Science 296(5572), 1445–1448 (2002) ADSCrossRefGoogle Scholar
  19. Merline, W.J., et al.: Asteroids do have satellites. Asteroids III(1), 289–312 (2002) ADSGoogle Scholar
  20. Neutsch, W.: On the gravitational energy of ellipsoidal bodies and some related functions. Astron. Astrophys. 72, 339–347 (1979) ADSMATHGoogle Scholar
  21. Noll, K.S., et al.: Discovery of a binary Centaur. Icarus 184(2), 611–618 (2006) ADSCrossRefGoogle Scholar
  22. Pravec, P., Harris, A.W.: Binary asteroid population: 1. Angular momentum content. Icarus 190(1), 250–259 (2007) ADSCrossRefGoogle Scholar
  23. Pravec, P., et al.: Photometric survey of binary near-Earth asteroids. Icarus 181(1), 63–93 (2006) ADSCrossRefGoogle Scholar
  24. Russell, R.P.: Global search for planar and three-dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006) ADSMathSciNetCrossRefGoogle Scholar
  25. Scheeres, D.J., Augenstein, S.: Spacecraft motion about binary asteroids. Adv. Astronaut. Sci. 116, 1–20 (2004) Google Scholar
  26. Scheeres, D.J., et al.: Orbits close to asteroid 4769 Castalia. Icarus 121(1), 67–87 (1996) ADSCrossRefGoogle Scholar
  27. Scheeres, D.J., et al.: Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132(1), 53–79 (1998) ADSCrossRefGoogle Scholar
  28. Tardivel, S., Scheeres, D.J.: Ballistic deployment of science packages on binary asteroids. J. Guid. Control Dyn. 36(3), 700–709 (2013) ADSCrossRefGoogle Scholar
  29. Tardivel, S., Michel, P., Scheeres, D.J.: Deployment of a lander on the binary asteroid (175706) 1996 FG3, potential target of the European MarcoPolo-R sample return mission. Acta Astronaut. 89, 60–70 (2013) ADSCrossRefGoogle Scholar
  30. Vrahatis, M.N., Iordanidis, K.I.: A rapid generalized method of bisection for solving systems of non-linear equations. Numer. Math. 49(2–3), 123–138 (1986) MathSciNetCrossRefMATHGoogle Scholar
  31. Walsh, K.J., Richardson, D.C., Michel, P.: Rotational breakup as the origin of small binary asteroids. Nature 454(7201), 188–191 (2008) ADSCrossRefGoogle Scholar
  32. Yu, Y.: Research on Orbital Dynamics in the Gravitational Field of Small Bodies, pp. 17–18 (2014) Google Scholar
  33. Yu, Y., Baoyin, H.: Orbital dynamics in the vicinity of asteroid 216 Kleopatra. Astron. J. 143(3), 62 (2012a) ADSCrossRefGoogle Scholar
  34. Yu, Y., Baoyin, H.: Generating families of 3D periodic orbits about asteroids. Mon. Not. R. Astron. Soc. 427(1), 872–881 (2012b) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Beijing Institute of TechnologyBeijingChina

Personalised recommendations