Astrophysics and Space Science

, Volume 355, Issue 1, pp 23–32 | Cite as

Impact of plasma sheath on rocket-based E-region ion measurements

  • Nadia Imtiaz
  • Johnathan Burchill
  • Richard Marchand
Original Article


We model the particle velocity distribution functions around the entrance window of the Suprathermal Ion Imager (SII). The SII sensor was mounted on a 1 m boom carried by the scientific payload of NASA rocket 36.234 as part of Joule II mission to investigate Joule heating in the E-region ionosphere. The rocket flew above Northern Alaska on 19 January 2007. The payload was spin-stabilized with a period of 1.6 s, giving an apparent rotation of the ion flow velocity in the frame of reference of the payload. The SII sensor is an electrostatic analyzer that measures two dimensional slices of the distribution of the kinetic energies and arrival-angles of low energy ions. The study is concerned with the interpretation of data obtained from the SII sensor. For this purpose, we numerically investigate ram velocity effects on ions velocity distributions in the vicinity of the SII sensor aperture at an altitudes of approximately 150 km. The electrostatic sheath profiles surrounding the SII sensor, boom and payload are calculated numerically with the PIC code PTetra. It is observed that the direction of the ion flow velocity modifies the plasma sheath potential profile. This in turn impacts the velocity distributions of NO+ and \(\mathrm{O}_{2}^{+}\) ions at the aperture of the particle sensor. The velocity distribution functions at the sensor aperture are calculated by using test-particle modeling. These particle distribution functions are then used to inject particles in the sensor, and calculate the fluxes on the sensor microchannel plate (MCP), from which comparisons with the measurements can be made.


Suprathermal Ion imager PIC 



We thank D. Knudsen and R. Pfaff for providing data for this study. This work is supported by the Natural Sciences and Engineering Research Council of Canada. Support was also provided by the International Space Science Institute in Bern, Switzerland. The simulations presented in this work made use of the WestGrid computing facilities. N. Imtiaz acknowledge U of A for providing financial support under teaching and research assistantship program to complete this research. This work was done while N. Imtiaz was a graduate student at University of Alberta, Canada.


  1. Burchill, J.K., Clemmon, J.H., Knudsen, D.J., Larsen, M., Nicolls, M.J., Pfaff, R.F., Rowland, D., Sangalli, L.: J. Geophys. Res. 117 (2012) Google Scholar
  2. Carlson, C., McFadden, J., Turin, P., Curtis, D., Magoncelli, A.: Space Sci. Rev. 98, 33–66 (2001) ADSCrossRefGoogle Scholar
  3. Geuzaine, C., Remacle, J.-F.: Int. J. Numer. Methods Eng. 79, 1309–1331 (2009) CrossRefGoogle Scholar
  4. Curran, D.B., Goertz, C.K., Whelan, T.A.: Geophys. Res. Lett. 14, 99–102 (1987) ADSCrossRefGoogle Scholar
  5. Engwall, E., Eriksson, A.I., Forest, J.: Phys. Plasmas 13 (2006) Google Scholar
  6. Geach, J., Shwartz, S.J., Genot, V., Moullard, O., Lahiff, A., Fazakerley, A.N.: Ann. Geophys. 23, 931–943 (2005) ADSCrossRefGoogle Scholar
  7. Hundhausen, A., Asbridge, J., Bame, S., Gilbert, H., Strong, I.: J. Geophys. Res. 72, 87–100 (1967) ADSCrossRefGoogle Scholar
  8. Knudsen, D.J., Burchill, J.K., Berg, K., Cameron, T., Enno, G.A., Marcellus, C.G., King, E.P., Wevers, I., King, R.A.: Rev. Sci. Instrum. 74, 202–211 (2003) ADSCrossRefGoogle Scholar
  9. Mackay, F., Marchand, R., Kabin, K., Lu, J.Y.: J. Plasma Phys. 24, 301–318 (2008) ADSGoogle Scholar
  10. Marchand, R.: Commun. Comput. Phys. 8, 471–483 (2010) Google Scholar
  11. Marchand, R., Burchill, J.K., Knudsen, D.J.: Space Sci. Rev. 156, 73–87 (2010) ADSCrossRefGoogle Scholar
  12. Marchand, R.: IEEE Trans. Plasma Sci. 40 (2012) Google Scholar
  13. Ogilvie, K., Chornay, D., Fritzenreiter, R., Hunsaker, F., Keller, J., Lobell, J., Miller, J., Scudder, J., Sittler, J.E.C., Torbert, R., Bodet, D., Needell, G., Lazarus, A., Steinberg, J., Tappan, J., Mavretic, A., Gergin, E.: Space Sci. Rev. 71, 55–77 (1995) ADSCrossRefGoogle Scholar
  14. Olson, J., Milochn, W., Ratynskaia, S., Yaroshenko, V.: Phys. Plasmas 17 (2010) Google Scholar
  15. Pfaff, R., Carlson, C., Watzin, J., Everett, D., Gruner, T.: Space Sci. Rev. 98 (2001) Google Scholar
  16. Roussel, J.F., Rogier, F., Dufour, G., Matéo-Vélez, J.-C., Forest, J., Hilgers, A., Rodgers, D., Girard, C., Payan, D.: IEEE Trans. 36, 2360–2368 (2008) Google Scholar
  17. Roussel, J.F., Dufour, G., Matéo-Vélez, J.-C., Thiébault, B., Andersson, B., Rodgers, D., Hilgers, A., Payan, D.: IEEE Trans. Plasma Sci. 40 (2010) Google Scholar
  18. Rehman, S., Burchill, J., Eriksson, A., Marchand, R.: Planet. Space Sci. 73, 145–150 (2012) ADSCrossRefGoogle Scholar
  19. Sangalli, L., Knudsen, D.J., Larsen, M.F., Zhan, T., Pfaff, R.F., Rowland, D.: J. Geophys. Res. 114 (2009) Google Scholar
  20. Guillemant, S.: PhD Dissertation (2014) Google Scholar
  21. Yang, J., Chen, X.-X., Zhou, J., Xia, S.-H.: J. Astronaut. 31, 531–535 (2010) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nadia Imtiaz
    • 1
  • Johnathan Burchill
    • 2
  • Richard Marchand
    • 3
  1. 1.Theoretical Physics DivisionPINSTECHNilorePakistan
  2. 2.Department of Physics and AstronomyCalgaryCanada
  3. 3.Department of PhysicsUniversity of AlbertaEdmontonCanada

Personalised recommendations