Astrophysics and Space Science

, Volume 355, Issue 1, pp 95–103 | Cite as

A comprehensive comparative study of temporal properties between X-ray flares and GRB pulses

Original Article


We demonstrate that the optical flares, X-ray flares (XRFs), and the gamma-ray burst (GRB) pulses exhibit similar behaviors as evidenced by correlations among temporal properties and the temporal properties on energy by a comprehensive comparative analysis of 24 optical flares, 92 XRFs and 102 GRB pulses. The flare/pulse peak time, t pk , is correlated with their width, w, and with w/t pk for the three samples, but their slopes are very different. Both of the flares and GRB pulses bear the similar asymmetries and the asymmetry evolves neither with w nor with t pk . The spectral lags of the XRFs are much larger than those of the GRB pulses and almost follow the same lag versus width relation as that of the GRB pulse. In addition, the corresponding broadening of temporal properties (width, rise width and decay width) of the XRFs with energy decreasing follows the same power-law relation as those of the GRB pulses. The K-S tests show the distributions of the three corresponding power-law indices of the XRFs are the same as those of the GRB pulses at the 1 % significance level. All of our demonstrated relations and previous correlated relations seem to indicate that the XRFs as well as the optical flares should be belong to a extended class of the prompt GRBs that dominate the tail of the distribution function. Therefore, our analysis results place some constraints on the physical mechanism responsible for the pulsed emission properties.


Gamma rays: bursts Method: statistical 



We acknowledge the anonymous referee for careful and helpful review. We thank Xiaohong Zhao for helpful discussions. This work was supported by the National Natural Science Foundation of China (grant 11263006), the Key Program for Science Fund of the Education Department of Yunnan Province (2011Z004), the Open Research Program of Key Laboratory for the Structure and Evolution of Celestial Objects (OP201106), the High-Energy Astrophysics Science and Technology Innovation Team of Yunnan Higher School and the Yunnan Gravitation Theory Innovation Team (2011C1).


  1. Bernardini, M.G., et al.: Astron. Astrophys. 526, 27 (2011) CrossRefGoogle Scholar
  2. Bhat, P.N., et al.: Astrophys. J. 744, 141 (2012) ADSCrossRefGoogle Scholar
  3. Burrows, D.N., et al.: Science 309, 1833 (2005) ADSCrossRefGoogle Scholar
  4. Chincarini, G., et al.: Astrophys. J. 671, 1903 (2007) ADSCrossRefGoogle Scholar
  5. Chincarini, G., et al.: Mon. Not. R. Astron. Soc. 406, 2113 (2010) (Paper I) ADSCrossRefGoogle Scholar
  6. Crew, G.B., et al.: Astrophys. J. 599, 387 (2003) ADSCrossRefGoogle Scholar
  7. Daigne, F., Mochkovitch, R.: Mon. Not. R. Astron. Soc. 296, 275 (1998) ADSCrossRefGoogle Scholar
  8. Falcone, A.D., et al.: Astrophys. J. 641, 1010 (2006) ADSCrossRefGoogle Scholar
  9. Falcone, A.D., et al.: Astrophys. J. 671, 1921 (2007) ADSCrossRefGoogle Scholar
  10. Fenimore, E.E., et al.: Astrophys. J. 448, L101 (1995) ADSCrossRefGoogle Scholar
  11. Fan, Y.Z., Zhang, B., Proga, D.: Astrophys. J. 635, L129 (2005) ADSCrossRefGoogle Scholar
  12. Galli, A., Piro, L.: Astron. Astrophys. 455, 413 (2006) ADSCrossRefGoogle Scholar
  13. Hakkila, J., et al.: Astrophys. J. 677, L81 (2008) ADSCrossRefGoogle Scholar
  14. Hakkila, J., Cumbee, R.S.: In: Meegan, C., Kouveliotou, C., Gehrels, N. (eds.) AIP Conf. Proc 1133, Gamma-Ray Burst. Am. Inst. of Phys., New York (2009) Google Scholar
  15. Hakkila, J., Preece, R.D.: Astrophys. J. 740, 104 (2011) ADSCrossRefGoogle Scholar
  16. Ioka, K., Nakamura, T.: Astrophys. J. 554, L163 (2001) ADSCrossRefGoogle Scholar
  17. Ioka, K., Kobayashi, S., Zhang, B.: Astrophys. J. 631, 429 (2005) ADSCrossRefGoogle Scholar
  18. Kobayashi, S., Piran, T., Sari, R.: Astrophys. J. 490, 92 (1997) ADSCrossRefGoogle Scholar
  19. Kocevski, D., Ryde, F., Liang, E.: Astrophys. J. 596, 389 (2003) ADSCrossRefGoogle Scholar
  20. Lazzati, D., Perna, R.: Mon. Not. R. Astron. Soc. 375, L46 (2007) ADSCrossRefGoogle Scholar
  21. Lazzati, D., Perna, R., Begelman, M.C.: Mon. Not. R. Astron. Soc. 388, L15 (2008) ADSCrossRefGoogle Scholar
  22. Li, L., et al.: Astrophys. J. 758, 27 (2012) ADSCrossRefGoogle Scholar
  23. Link, B., Epstein, R.I., Priedhorsky, W.C.: Astrophys. J. 408, L81 (1993) ADSCrossRefGoogle Scholar
  24. Maxham, A., Zhang, B.: Astrophys. J. 707, 1623 (2009) ADSCrossRefGoogle Scholar
  25. Margutti, R., et al.: Mon. Not. R. Astron. Soc. 406, 2149 (2010) ADSCrossRefGoogle Scholar
  26. Meszaros, P., Rees, M.J.: Astrophys. J. 482, L29 (1997) ADSCrossRefGoogle Scholar
  27. Nemiroff, R.J.: Astrophys. J. 544, 805 (2000) ADSCrossRefGoogle Scholar
  28. Norris, J.P., et al.: Astrophys. J. 459, 393 (1996) ADSCrossRefGoogle Scholar
  29. Norris, J.P., Bonnell, J.T., Watanabe, K.: Astrophys. J. 518, 901 (1999) ADSCrossRefGoogle Scholar
  30. Norris, J.P., et al.: Astrophys. J. 627, 324 (2005) ADSCrossRefGoogle Scholar
  31. Peng, Z.Y., et al.: Mon. Not. R. Astron. Soc. 368, 1351 (2006) ADSCrossRefGoogle Scholar
  32. Peng, Z.Y., et al.: Chin. J. Astron. Astrophys. 7, 428 (2007) ADSCrossRefGoogle Scholar
  33. Peng, Z.Y., et al.: Astrophys. J. 752, 132 (2012) ADSCrossRefGoogle Scholar
  34. Peng, Z.Y., et al.: Publ. Astron. Soc. Jpn. 65, 71 (2013) ADSCrossRefGoogle Scholar
  35. Perna, R., Armitage, P.J., Zhang, B.: Astrophys. J. 636, L29 (2006) ADSCrossRefGoogle Scholar
  36. Piro, L., et al.: Astrophys. J. 623, 314 (2005) ADSCrossRefGoogle Scholar
  37. Press, et al.: Numerical Recipes in FORTRAN, 2nd edn. Cambridge University Press, New York (1992) MATHGoogle Scholar
  38. Proga, D., Zhang, B.: Mon. Not. R. Astron. Soc. 370, L61 (2006) ADSCrossRefGoogle Scholar
  39. Qin, Y.P., et al.: Astrophys. J. 632, 1008 (2005) ADSCrossRefGoogle Scholar
  40. Ramirez-Ruiz, E., Fenimore, E.E.: Astrophys. J. 539, 712 (2000) ADSCrossRefGoogle Scholar
  41. Romano, et al.: Astron. Astrophys. 450, 59 (2006) ADSCrossRefGoogle Scholar
  42. Sari, R., Piran, T., Narayan, R.: Astrophys. J. 497, L17 (1998) ADSCrossRefGoogle Scholar
  43. Shenoy, A., et al.: Astrophys. J. 778, 3 (2013) ADSCrossRefGoogle Scholar
  44. Sonbas, E., et al.: Astrophys. J. 767, L28 (2013) ADSCrossRefGoogle Scholar
  45. Swenson, C., et al.: Astrophys. J. 774, 2 (2013) ADSCrossRefGoogle Scholar
  46. Wang, K., Dai, Z.: Astrophys. J. 772, 152 (2013) ADSCrossRefGoogle Scholar
  47. Willingale, R., Genet, F., Granot, J., et al.: Mon. Not. R. Astron. Soc. 403, 1296 (2010) ADSCrossRefGoogle Scholar
  48. Wu, X.F., et al.: (2005). astro-ph/0512555
  49. Zhang, F.W., Qin, Y.P., Zhang, B.B.: Publ. Astron. Soc. Jpn. 59, 857 (2007) ADSCrossRefGoogle Scholar
  50. Zhang, F.W., Qin, Y.P.: New Astron. 13, 485 (2008) ADSCrossRefGoogle Scholar
  51. Zhang, F.W.: Astrophys. J. 685, 1052 (2008) ADSCrossRefGoogle Scholar
  52. Zhang, B., et al.: Astrophys. J. 642, 354 (2006) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.College of Physics and ElectronicsYunnan Normal UniversityKunmingP.R. China
  2. 2.Department of PhysicsLiupanshui Normal CollegeLiupanshuiP.R. China
  3. 3.Department of PhysicsYuxi Normal CollegeYuxiP.R. China

Personalised recommendations