Astrophysics and Space Science

, Volume 355, Issue 1, pp 43–56 | Cite as

Modeling of migrating grains on asteroid’s surface

Original Article


We present a numerical method based on the polyhedral data of asteroid shape for simulation of individual grain’s dynamics around the asteroid surface, with application to migration of regolith material on specific asteroid. Surface gravitational attraction and potential are computed using polyhedral method with a correction on possible singularities; asteroid surface is approximated with continuous quartic Bézier patches based on the division of polyhedral mesh, which provides sufficient geometrical information for the simulation. Orbital motion and surface motion are processed separately by checking if the particle touches or leaves the surface. Collisions are treated as instantaneous point-contact events with the local quartic curved surface. The subpoint is recorded throughout the process to track the ID of the particle. We provide full description of this method including very detailed treatments in numeric. Several basic tests are conducted to examine the performance of this method, and the potential application of this method is also discussed. The test results of seismic regolith migration on crater walls show consistent conclusions with former investigation.


Asteroid dynamics Geographic representation Surface processing Numerical simulation 



This work was supported by the National Basic Research Program of China (973 Program, 2012CB720000).


  1. Barnett, C.T.: Theoretical modeling of the magnetic and gravitational fields of an arbitrarily shaped three-dimensional body. Geophysics 41, 1353–1364 (1976) ADSCrossRefGoogle Scholar
  2. Bellerose, J., Scheeres, D.J.: Dynamics and control for surface exploration of small bodies. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Hawaii, the United States (2008) Google Scholar
  3. Belton, M.J.S., Veverka, J., Thomas, P., Helfenstein, P., Simonelli, D., et al.: Galileo encounter with 951 Gaspra: first pictures of an asteroid. Science 257, 1647–1652 (1992) ADSCrossRefGoogle Scholar
  4. Belton, M.J.S., Chapman, C.R., Veverka, J., Klaasen, K.P., Harch, A., et al.: First images of asteroid 243 Ida. Science 265, 1543–1547 (1994) ADSCrossRefGoogle Scholar
  5. Carr, M., Kirk, R., McEwan, A., Veverka, J., Thomas, P., et al.: The geology of Gaspra. Icarus 107, 61–71 (1994) ADSCrossRefGoogle Scholar
  6. Chapman, C.R.: Near-Earth asteroid rendezvous: Eros as the key to the s-type conundrum. Lunar Planet. Sci. XXVI, 229–230 (1995) ADSGoogle Scholar
  7. Chapman, C.R.: S-type asteroids, ordinary chondrites, and space weathering: the evidence from Galileo’s fly-bys of Gaspra and Ida. Meteorit. Planet. Sci. 31, 699–725 (1996) ADSCrossRefGoogle Scholar
  8. Chapman, C.R.: Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539–567 (2004) ADSCrossRefGoogle Scholar
  9. Cheng, A.F., Izenberg, N., Chapman, C.R., Zuber, M.T.: Ponded deposits on asteroid 433 Eros. Meteorit. Planet. Sci. 37, 1095–1105 (2002) ADSCrossRefGoogle Scholar
  10. Clark, B.E., Fanale, F., Salisbury, J.: Meteorite-asteroid spectral comparison: the effects of comminution, melting and recrystallization. Icarus 97, 288–297 (1992) ADSCrossRefGoogle Scholar
  11. Clark, B.E., Hapke, B., Pieters, C., Britt, D.: Asteroid space weathering and regolith evolution. In: Bottke, W.F. Jr., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 585–599. Univ. of Arizona Press, Tucson (2002) Google Scholar
  12. Cottingham, C.M., Deininger, W.D., Dissly, R.W., Epstein, K.W., Waller, D.M., et al.: Asteroid surface probes: a low-cost approach for the in situ exploration of small solar system objects. In: IEEE Aerospace Conference, Big Sky, Montana (2009) Google Scholar
  13. Farquhar, R., Kawaguchi, J., Russell, C., Schwehm, G., Veverka, J., et al.: Spacecraft exploration of asteroids: the 2001 perspective. In: Bottke, W.F. Jr., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 367–376. Univ. of Arizona Press, Tucson (2002) Google Scholar
  14. Feierberg, M.A., Larson, H.P., Chapman, C.R.: Spectroscopic evidence for undifferentiated s-type asteroids. Astrophys. J. 257, 361–372 (1982) ADSCrossRefGoogle Scholar
  15. Forsberg, R.: A Study of Terrain Reductions, Density Anomalies and Geophysical Inversion Methods in Gravity Field Modeling. The Department of Geodetic Science and Surveying, Ohio State University, No. 3.55 (1984) Google Scholar
  16. Gaffey, M.J., Bell, J.F., Brown, R.H., Burbine, T.H., Piatek, J.L., et al.: Mineralogical variations within the s-type asteroid class. Icarus 106, 573–602 (1993) ADSCrossRefGoogle Scholar
  17. Gaskell, R., Neese, C.: NEAR-A-MSI-5-EROSSHAPE-V1.0. NASA Planetary Data System (2008) Google Scholar
  18. Geissler, P., Petit, J.M., Durda, D., Greenberg, R., Bottke, W., et al.: Erosion and ejecta reaccretion on 243 Ida and its moon. Icarus 120, 140–157 (1996) ADSCrossRefGoogle Scholar
  19. Hamayun, Prutkin, I., Tenzer, R.: The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J. Geod. 83, 1163–1170 (2009) ADSCrossRefGoogle Scholar
  20. Housen, K.R., Wilkening, L.L.: Regoliths on small bodies in the solar system. Annu. Rev. Earth Planet. Sci. 10, 355–376 (1982) ADSCrossRefGoogle Scholar
  21. Housen, K.R., Wilkening, L.L., Chapman, C.R., Greenberg, R.J.: Asteroidal regoliths. Icarus 39, 317–351 (1979) ADSCrossRefGoogle Scholar
  22. Housen, K.R., Schmidt, R.M., Holsapple, K.A.: Crater ejecta scaling laws: fundamental forms based on dimensional analysis. J. Geophys. Res. 88, 2485–2499 (1983) ADSCrossRefGoogle Scholar
  23. Hubbert, M.K.: A line-integral method of computing the gravimetric effects of two-dimensional masses. Geophysics 13, 215–225 (1948) ADSCrossRefGoogle Scholar
  24. Hudson, R.S.: Three-dimensional reconstruction of asteroids from radar observations. Remote Sens. Rev. 8, 195–203 (1993) CrossRefGoogle Scholar
  25. Kawaguchi, J., et al.: Hayabusa (MUSES-C)-rendezvous and proximity operation. In: International Astronautic Congress, Fukuoka, Japan (2005) Google Scholar
  26. Landshof, J.A., Cheng, A.F.: NEAR mission and science operations. J. Astronaut. Sci. 43, 477–489 (1995) Google Scholar
  27. Mantz, A., Sullivan, R., Veverka, J.: Regolith transport in craters on Eros. Icarus 167, 197–203 (2004) ADSCrossRefGoogle Scholar
  28. Miyamoto, H., Yano, H., Scheeres, D.J., Abe, S., Barnouin-Jha, O., et al.: Regolith migration and sorting on asteroid Itokawa. Science 316, 1011–1014 (2007) ADSCrossRefGoogle Scholar
  29. Moroz, L.V., Fisenko, A.V., Semjonova, L.F.: Optical effects of regolith processes on s-asteroids as simulated by laser shots on ordinary chondrite and other mafic materials. Icarus 122, 366–382 (1996) ADSCrossRefGoogle Scholar
  30. Nagy, D., Papp, G., Benedek, J.: The gravitational potential and its derivatives for the prism. J. Geod. 74, 552–560 (2000) ADSCrossRefMATHGoogle Scholar
  31. Neese, C.: Small Body Radar Shape Models V2.0. EAR-A-5-DDR-RADARSHAPE-MODELS-V2.0. NASA Planetary Data System (2004) Google Scholar
  32. Nesvorny, D., Bottke, W.F., Vokrouhlicky, D., Chapman, C.R., Rafkin, S.: Do planetary encounters reset surfaces of near Earth asteroids? Icarus 209, 510–519 (2010) ADSCrossRefGoogle Scholar
  33. Ostro, S.J., Hudson, R.S., Benner, L.A.M., Giorgini, J.D., Magri, C., et al.: Asteroid radar astronomy. In: Bottke, W.F. Jr., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 151–168. Univ. of Arizona Press, Tucson (2002) Google Scholar
  34. Paul, M.K.: The gravity effect of a homogeneous polyhedron for three-dimensional interpretation. Pure Appl. Geophys. 112, 553–561 (1974) ADSCrossRefGoogle Scholar
  35. Petrović, S.: Determination of the potential of homogeneous polyhedral bodies using line integrals. J. Geod. 71, 44–52 (1996) ADSCrossRefMATHGoogle Scholar
  36. Plouff, D.: Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics 41, 727–741 (1976) ADSCrossRefGoogle Scholar
  37. Pohánka, V.: Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys. Prospect. 36, 733–751 (1988) ADSCrossRefGoogle Scholar
  38. Rausenberger, O.: Lehrbuch der Analytischen Mechanik I.B.G. Teubner, Leipzig (1888) MATHGoogle Scholar
  39. Richard, P.B., Alessandro, M., Sihane, M., Francesca, E.D., Mirel, B., et al.: Earth encounters as the origin of fresh surfaces on near-Earth asteroids. Nature 463, 331–334 (2010) CrossRefGoogle Scholar
  40. Richardson, J.E.: Cratering saturation and equilibrium: a new model looks at an old problem. Icarus 204, 697–712 (2009) ADSCrossRefGoogle Scholar
  41. Richardson, J.E.: Regolith generation, retention, and movement on asteroid surfaces: early modeling results. In: 42nd Lunar and Planetary Science Conference, Texas, the United States (2011) Google Scholar
  42. Richardson, D.C., Leinhardt, Z.M., Melosh, H.J., Bottke, J.W.F., Asphaug, E.: Gravitational aggregates: evidence and evolution. In: Bottke, W.F. Jr., Cellino, A., Paolicchi, P., Binzel, R.P. (eds.) Asteroids III, pp. 501–515. Univ. of Arizona Press, Tucson (2002) Google Scholar
  43. Richardson, J.E., Melosh, H.J., Greenberg, R.: Imapct-induced seismic activity on asteroid 433 Eros: a surface modification process. Science 306, 1526–1529 (2004) ADSCrossRefGoogle Scholar
  44. Richardson, J.E., Melosh, H.J., Lisse, C.M., Carcich, B.: A ballistics analysis of the deep impact ejecta plume: determining comet Tempel 1’s gravity, mass, and density. Icarus 190, 357–390 (2007) ADSCrossRefGoogle Scholar
  45. Richardson, D.C., Walsh, K.J., Murdoch, N., Michel, P.: Numerical simulations of granular dynamics: I. Hard-sphere discrete element method and tests. Icarus 212, 427–437 (2011) ADSCrossRefGoogle Scholar
  46. Rosato, A., Strandburg, K.J., Prinz, F., Swendsen, R.H.: Why the Brazil nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038–1040 (1987) ADSMathSciNetCrossRefGoogle Scholar
  47. Russel, C.T., Raymond, C.A., Fraschetti, T.C., Rayman, M.D., Polanskey, C.A., et al.: Dawn mission and operations. In: Asteroids, Comets, Meteors Proceedings IAU Symposium, Búzios, Brazil (2005) Google Scholar
  48. Saito, J., et al.: Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312, 1341–1344 (2006) ADSCrossRefGoogle Scholar
  49. Scheeres, D.J., Ostro, S.J., Hudson, R.S., De Jong, E.M., Suzuki, S.: Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132, 53–79 (1998) ADSCrossRefGoogle Scholar
  50. Scheeres, D.J., Abe, M., Yoshikawa, M., Nakamura, R., Gaskell, R.W., et al.: The effect of YORP on Itokawa. Icarus 188, 425–429 (2007) ADSCrossRefGoogle Scholar
  51. Scheeres, D.J., Hartzell, C.M., Sánchez, P., Swift, M.: Scaling forces to asteroid surfaces: the role of cohesion. Icarus 210, 968–984 (2010) ADSCrossRefGoogle Scholar
  52. Schwartz, S.R., Richardson, D.C., Michel, P.: An implementation of the soft-sphere discrete element method in a high-performance parallel gravity tree-code. Granul. Matter 14, 363–380 (2012) CrossRefGoogle Scholar
  53. Shirman, L.A., Séquin, C.H.: Local surface interpolation with Bézir patches. Comput. Aided Geom. Des. 4, 279–295 (1987) CrossRefMATHGoogle Scholar
  54. Shirman, L.A., Séquin, C.H.: Local surface interpolation with Bézir patches: errata and improvements. Comput. Aided Geom. Des. 8, 217–221 (1991) CrossRefMATHGoogle Scholar
  55. Sullivan, R., Greeley, R., Pappalardo, R., Asphaug, E., Moore, J., et al.: Geology of 243 Ida. Icarus 120, 119–139 (1996) ADSCrossRefGoogle Scholar
  56. Thomas, F.B., Stephen, T.L.: Differential Geometry of Curves and Surfaces. AK Peters, Wellesley (2010) MATHGoogle Scholar
  57. Thomas, P.C., et al.: Eros: shape, topography, and slope processes. Icarus 155, 18–37 (2002) ADSCrossRefGoogle Scholar
  58. Tsoulis, D., Petrović, S.: On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66, 535–539 (2001) ADSCrossRefGoogle Scholar
  59. Veverka, J., et al.: Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith. Science 292, 484–488 (2001a) ADSCrossRefGoogle Scholar
  60. Veverka, J., Thomas, P.C., Robinson, M., Murchie, S., Chapman, C., et al.: Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith. Science 292, 484–488 (2001b) ADSCrossRefGoogle Scholar
  61. Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59, 253–278 (1994) ADSCrossRefMATHGoogle Scholar
  62. Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1997) ADSCrossRefMATHGoogle Scholar
  63. Wilson, J.P.: The Handbook of Geographic Information Science. Wiley/Blackwell (2007) Google Scholar
  64. Yeomans, D.K., et al.: Estimating the mass of asteroid 253 Mathilde from tracking data during the near flyby. Science 278, 2106–2109 (1997) ADSCrossRefGoogle Scholar
  65. Zuber, M.T., et al.: The shape of 433 Eros from the NEAR-shoemaker laser rangefinder. Science 289, 2097–2101 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of AerospaceTsinghua UniversityBeijingChina
  2. 2.School of AerospaceTsinghua UniversityBeijingChina

Personalised recommendations