Skip to main content

Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques

Abstract

During the last few years a number of works have proposed that planetary harmonics regulate solar oscillations. Also the Earth’s climate seems to present a signature of multiple astronomical harmonics. Herein I address some critiques claiming that planetary harmonics would not appear in the data. I will show that careful and improved analysis of the available data do support the planetary theory of solar and climate variation also in the critiqued cases. In particular, I show that: (1) high-resolution cosmogenic 10Be and 14C solar activity proxy records both during the Holocene and during the Marine Interglacial Stage 9.3 (MIS 9.3), 325–336 kyear ago, present four common spectral peaks (confidence level ⪆95 %) at about 103, 115, 130 and 150 years (this is the frequency band that generates Maunder and Dalton like grand solar minima) that can be deduced from a simple solar model based on a generic non-linear coupling between planetary and solar harmonics; (2) time-frequency analysis and advanced minimum variance distortion-less response (MVDR) magnitude squared coherence analysis confirm the existence of persistent astronomical harmonics in the climate records at the decadal and multidecadal scales when used with an appropriate window lenght (L≈110 years) to guarantee a sufficient spectral resolution to solve at least the major astronomical harmonics. The optimum theoretical window length deducible from astronomical considerations alone is, however, L⪆178.4 years because the planetary frequencies are harmonics of such a period. However, this length is larger than the available 164-year temperature signal. Thus, the best coherence test can be currently made only using a single window as long as the temperature instrumental record and comparing directly the temperature and astronomical spectra as done in Scafetta (J. Atmos. Sol. Terr. Phys. 72(13):951–970, 2010) and reconfirmed here. The existence of a spectral coherence between planetary, solar and climatic oscillations is confirmed at the following periods: 5.2 year, 5.93 year, 6.62 year, 7.42 year, 9.1 year (main lunar tidal cycle), 10.4 year (related to the 9.93–10.87–11.86 year solar cycle harmonics), 13.8-15.0 year, ∼20 year, ∼30 year and ∼61 year, 103 year, 115 year, 130 year, 150 year and about 1000 year. This work responds to the critiques of Cauquoin et al. (Astron. Astrophys. 561:A132, 2014), who ignored alternative planetary theories of solar variations, and of Holm (J. Atmos. Sol. Terr. Phys. 110–111:23–27, 2014a), who used inadequate physical and time frequency analyses of the data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. http://zone.ni.com/reference/en-XX/help/372416A-01/svtconcepts/fft_funda/.

References

  • Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: Is there a planetary influence on solar activity? Astron. Astrophys. 548, A88 (2012)

    ADS  Article  Google Scholar 

  • Agnihotri, R., Dutta, K.: Centennial scale variations in monsoonal rainfall (Indian, East equatorial and Chinese monsoons): manifestations of solar variability. Curr. Sci. 85, 459–463 (2003)

    Google Scholar 

  • Bard, E., Raisbeck, G., Yiou, F., Jouzel, J.: Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus 52B, 985–992 (2000)

    ADS  Article  Google Scholar 

  • Benesty, J., Chen, J., Huang, Y.: Estimation of the coherence function with the MVDR approach. In: Acoustics, Speech and Signal Processing. ICASSP 2006 Proceedings, vol. 3, pp. 500–503 (2006). doi:10.1109/ICASSP.2006.1660700. http://www.mathworks.com/matlabcentral/fileexchange/9781-coherence-function/content/coherence_MVDR

    Google Scholar 

  • Bennett, J., Donahue, M., Schneider, N., Voit, M.: The Cosmic Perspective, 7th edn. Pearson Education, San Francisco (2014)

    Google Scholar 

  • Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G.: Persistent solar influence on North Atlantic climate during the Holocene. Science 294, 2130–2136 (2001)

    ADS  Article  Google Scholar 

  • Brohan, P., Kennedy, J.J., Harris, I., Tett, S.F.B., Jones, P.D.: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophys. Res. 111, D12106 (2006). doi:10.1029/2005JD006548

    ADS  Article  Google Scholar 

  • Callebaut, D.K., de Jager, C., Duhau, S.: The influence of planetary attractions on the solar tachocline. J. Atmos. Sol.-Terr. Phys. 80, 73–78 (2012)

    ADS  Article  Google Scholar 

  • Cauquoin, A., Raisbeck, G.M., Jouzel, J., Bard, E. (ASTER Team): No evidence for planetary influence on solar activity 330 000 years ago. Astron. Astrophys. 561, A132 (2014)

    Article  Google Scholar 

  • Charvátová, I.: Long-term predictive assessments of solar and geomagnetic activities made on the basis of the close similarity between the solar inertial motions in the intervals 1840–1905 and 1980–2045. New Astron. 14, 25–30 (2009)

    ADS  Article  Google Scholar 

  • Christiansen, B., Ljungqvist, F.C.: The extra-tropical northern hemisphere temperature in the last two millennia: reconstructions of low-frequency variability. Clim. Past 8, 765–786 (2012)

    Article  Google Scholar 

  • Chylek, P., Folland, C.K., Dijkstra, H.A., Lesins, G., Dubey, M.K.: Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic multidecadal oscillation. Geophys. Res. Lett. 38, L13704 (2011)

    ADS  Article  Google Scholar 

  • Copernicus, N.: De Revolutionibus Orbium Coelestium. Johannes Petreius (1543)

  • Davis, J.C., Bohling, G.: The search for patterns in ice-core temperature curves. In: Gerhard, L.C., Harrison, W.E., Hanson, B.M. (eds.) Geological Perspectives of Global Climate Change, pp. 213–229 (2001)

    Google Scholar 

  • Fairbridge, R.W., Shirley, J.H.: Prolonged minima and the 179-year cycle of the solar inertial motion. Sol. Phys. 10, 191–210 (1987)

    ADS  Article  Google Scholar 

  • Geddes, A.B., King-Hele, D.G.: Equations for mirror symmetries among the distances of the planets. Q. J. R. Astron. Soc. 24, 10–13 (1983)

    ADS  Google Scholar 

  • Ghil, M., Allen, R.M., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, A., Saunders, A., Tian, Y., Varadi, F., Yiou, P.: Advanced spectral methods for climatic time series. Rev. Geophys. 40, 3.1–3.41 (2002) (SSA-MTM tool kit for spectral analysis)

    Article  Google Scholar 

  • Goldreich, P., Peale, S.J.: Resonant rotation for Venus? Nature 209, 1117–1118 (1966)

    ADS  Article  Google Scholar 

  • Grinsted, A., Moore, J.C., Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 561–566 (2004)

    ADS  Article  Google Scholar 

  • Holm, S.: On the alleged coherence between the global temperature and the Sun’s movement. J. Atmos. Sol.-Terr. Phys. 110–111, 23–27 (2014a)

    Article  Google Scholar 

  • Holm, S.: Corrigendum to “On the alleged coherence between the global temperature and the sun’s movement”. J. Atmos. Sol.-Terr. Phys. 119, 230–231 (2014b). arXiv:1307.1086 [v3, Wed, 23 Apr 2014 13:14:40 GMT]

    ADS  Article  Google Scholar 

  • Hoyt, D.V., Schatten, K.H.: The Role of the Sun in the Climate Change. Oxford Univ. Press, New York (1997)

    Google Scholar 

  • Hung, C.-C.: Apparent relations between solar activity and solar tides caused by the planets. NASA report/TM-2007-214817 (2007). Available at http://ntrs.nasa.gov/search.jsp?R=20070025111

  • Iyengar, R.N.: Monsoon rainfall cycles as depicted in ancient Sanskrit texts. Curr. Sci. 97, 444–447 (2009)

    Google Scholar 

  • Jakubcová, I., Pick, M.: The planetary system and solar-terrestrial phenomena. Stud. Geophys. Geod. 30, 224–235 (1986)

    ADS  Article  Google Scholar 

  • Jevrejeva, S., Moore, J.C., Grinsted, A., Woodworth, P.: Recent global sea level acceleration started over 200 years ago? Geophys. Res. Lett. 35, L08715 (2008)

    ADS  Article  Google Scholar 

  • Jose, P.D.: Sun’s motion and sunspots. Astron. J. 70, 193–200 (1965)

    ADS  Article  Google Scholar 

  • Kepler, J.: Mysterium Cosmographicum (The Cosmographic Mystery) (1596)

    Google Scholar 

  • Kepler, J.: De Stella Nova in Pede Serpentarii (On the new star in Ophiuchus’s foot) (1606)

  • Kerr, R.A.: A variable sun paces millennial climate. Science 294, 1431–1433 (2001)

    Article  Google Scholar 

  • Klyashtorin, L.B., Borisov, V., Lyubushin, A.: Cyclic changes of climate and major commercial stocks of the Barents Sea. Marine Biol. Res. 5, 4–17 (2009)

    Article  Google Scholar 

  • Knudsen, M.F., Seidenkrantz, M.-S., Jacobsen, B.H., Kuijpers, A.: Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat. Commun. 2, 178 (2011)

    Article  Google Scholar 

  • Loehle, C., Scafetta, N.: Climate change attribution using empirical decomposition of climatic data. Open Atmos. Sci. J. 5, 74–86 (2011)

    Article  Google Scholar 

  • Manzi, V., Gennari, R., Lugli, S., Roveri, M., Scafetta, N., Schreiber, C.: High-frequency cyclicity in the Mediterranean Messinian evaporites: evidence for solar-lunar climate forcing. J. Sediment. Res. 82, 991–1005 (2012)

    ADS  Article  Google Scholar 

  • Ma’sar, A.: In: Yamamoto, K., Burnett, C. (eds.) On Historical Astrology—The Book of Religions and Dynasties (On the Great Conjunctions). Brill, Leiden (2000)

    Google Scholar 

  • Mazzarella, A., Scafetta, N.: Evidences for a quasi 60-year North Atlantic oscillation since 1700 and its meaning for global climate change. Theor. Appl. Climatol. 107(3–4), 599–609 (2012)

    ADS  Article  Google Scholar 

  • McCracken, K.G., Beer, J., Steinhilber, F., Abreu, J.: A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Sol. Phys. 286(2), 609–627 (2013)

    ADS  Article  Google Scholar 

  • McCracken, K.G., Beer, J., Steinhilber, F., Abreu, J.: Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Sol. Phys. 286(2), 609–627 (2014). doi:10.1007/s11207-014-0510-1

    ADS  Article  Google Scholar 

  • Molchanov, A.M.: The resonant structure of the solar system: the law of planetary distances. Icarus 8, 203–215 (1968)

    ADS  Article  Google Scholar 

  • Molchanov, A.M.: The reality of resonances in the solar system. Icarus 11, 104–110 (1969a)

    ADS  Article  Google Scholar 

  • Molchanov, A.M.: Resonances in complex systems: a reply to critiques. Icarus 11, 95–103 (1969b)

    ADS  Article  Google Scholar 

  • Mörner, N.-A., Tattersall, R., Solheim, J.-E.: Preface: pattern in solar variability, their planetary origin and terrestrial impacts. Pattern Recogn. Phys. 1, 203–204 (2013). doi:10.5194/prp-1-203-2013, http://www.pattern-recogn-phys.net/special_issue2.html

    ADS  Article  Google Scholar 

  • Ogurtsov, M.G., Nagovitsyn, Y.A., Kocharov, G.E., Jungner, H.: Long-period cycles of the sun’s activity recorded in direct solar data and proxies. Sol. Phys. 211, 371–394 (2002)

    ADS  Article  Google Scholar 

  • Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization, a Universal Concept in Nonlinear Science. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  • Poluianov, A., Usoskin, I.: Critical analysis of a hypothesis of the planetary tidal influence on solar activity. Sol. Phys. 289, 2333–2342 (2014)

    ADS  Article  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  • Puetz, S.J., Prokoph, A., Borchardt, G., Mason, E.W.: Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events. Chaos Solitons Fractals 62–63, 55–75 (2014)

    MathSciNet  Article  Google Scholar 

  • Pustil’nik, L.A., Din, G.Y.: Influence of solar activity on the state of the wheat market in medieval. England. Sol. Phys. 223, 335–356 (2004)

    ADS  Article  Google Scholar 

  • Qian, W.-H., Lu, B.: Periodic oscillations in millennial global-mean temperature and their causes. Chin. Sci. Bull. 55, 4052–4057 (2010)

    Article  Google Scholar 

  • Salvador, R.J.: A mathematical model of the sunspot cycle for the past 1000 year. Pattern Recogn. Phys. 1, 117–122 (2013)

    ADS  Article  Google Scholar 

  • Scafetta, N.: Empirical evidence for a celestial origin of the climate oscillations and its implications. J. Atmos. Sol.-Terr. Phys. 72(13), 951–970 (2010)

    ADS  Article  Google Scholar 

  • Scafetta, N.: A shared frequency set between the historical mid-latitude aurora records and the global surface temperature. J. Atmos. Sol.-Terr. Phys. 74, 145–163 (2012a)

    ADS  Article  Google Scholar 

  • Scafetta, N.: Testing an astronomically based decadal-scale empirical harmonic climate model versus the IPCC 2007, general circulation climate models. J. Atmos. Sol.-Terr. Phys. 80, 124–137 (2012b)

    ADS  Article  Google Scholar 

  • Scafetta, N.: Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter–Saturn tidal frequencies plus the 11-year solar dynamo cycle. J. Atmos. Sol.-Terr. Phys. 80, 296–311 (2012c)

    ADS  Article  Google Scholar 

  • Scafetta, N.: Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? A proposal for a physical mechanism based on the mass-luminosity relation. J. Atmos. Sol.-Terr. Phys. 81–82, 27–40 (2012d)

    Article  Google Scholar 

  • Scafetta, N.: Solar and planetary oscillation control on climate change: hind-cast, forecast and a comparison with the CMIP5 GCMs. Energy Environ. Sci. 24(3–4), 455–496 (2013a)

    Google Scholar 

  • Scafetta, N.: Discussion on climate oscillations: CMIP5 general circulation models versus a semi-empirical harmonic model based on astronomical cycles. Earth-Sci. Rev. 126, 321–357 (2013b)

    ADS  Article  Google Scholar 

  • Scafetta, N.: The complex planetary synchronization structure of the solar system. Pattern Recogn. Phys. 2, 1–19 (2014). doi:10.5194/prp-2-1-2014

    ADS  Article  Google Scholar 

  • Scafetta, N., Willson, R.C.: Planetary harmonics in the historical Hungarian aurora record (1523–1960). Planet. Space Sci. 78, 38–44 (2013a)

    ADS  Article  Google Scholar 

  • Scafetta, N., Willson, R.C.: Empirical evidences for a planetary modulation of total solar irradiance and the TSI signature of the 1.09-year Earth–Jupiter conjunction cycle. Astrophys. Space Sci. 348(1), 25–39 (2013b)

    ADS  Article  Google Scholar 

  • Scafetta, N., Willson, R.C.: ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. 350(2), 421–442 (2014)

    ADS  Article  Google Scholar 

  • Scafetta, N., Humlum, O., Solheim, J.-E., Stordahl, K.: Comment on “The influence of planetary attractions on the solar tachocline” by Callebaut, de Jager and Duhau. J. Atmos. Sol.-Terr. Phys. 102, 368–371 (2013)

    ADS  Article  Google Scholar 

  • Scharf, C.A.: Possible constraints on exoplanet magnetic field strengths from planet–star interaction. Astrophys. J. 722, 1547–1555 (2010)

    ADS  Article  Google Scholar 

  • Schulz, M., Mudelsee, M.: REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput. Geosci. 28, 421–426 (2002)

    ADS  Article  Google Scholar 

  • Sharp, G.J.: Are Uranus & Neptune responsible for solar grand minima and solar cycle modulation? Int. J. Astron. Astrophys. 3, 260–273 (2013)

    Article  Google Scholar 

  • Shirley, J.H., Sperber, K.R., Fairbridge, R.W.: Sun’s internal motion and luminosity. Sol. Phys. 127, 379–392 (1990)

    ADS  Article  Google Scholar 

  • Shkolnik, E., Walker, G.A.H., Bohlender, D.A.: Evidence for planet-induced chromospheric activity on HD 179949. Astrophys. J. 597, 1092–1096 (2003)

    ADS  Article  Google Scholar 

  • Shkolnik, E., Walker, G.A.H., Bohlender, D.A., Gu, P.-G., Kurster, M.: Hot jupiters and hot spots: the short- and long-term chromospheric activity on stars with giant planets. Astrophys. J. 622, 1075–1090 (2005)

    ADS  Article  Google Scholar 

  • Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., Heikkila, U., Kubik, P.W., Mann, M., McCracken, K.G., Miller, H., Miyahara, H., Oerter, H., Wilhelms, F.: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc. Natl. Acad. Sci. USA 109(16), 5967–5971 (2012)

    ADS  Article  Google Scholar 

  • Tan, B., Cheng, Z.: The mid-term and long-term solar quasiperiodic cycles and the possible relationship with planetary motions. Astrophys. Space Sci. 343, 511–521 (2013)

    ADS  Article  Google Scholar 

  • Tattersall, R.: The hum: log-normal distribution and planetary–solar resonance. Pattern Recogn. Phys. 1, 185–198 (2013). doi:10.5194/prp-1-185-2013

    ADS  Article  Google Scholar 

  • Temple, R.: The Sirius Mystery (Destiny Books), Appendix 3, “Why Sixty Years?” (1998). http://www.bibliotecapleyades.net/universo/siriusmystery/siriusmystery_appendix03.htm

  • Thejll, P., Lassen, K.: Solar forcing of the northern hemisphere land air temperature: new data. J. Atmos. Sol.-Terr. Phys. 62, 1207–1213 (2000)

    ADS  Article  Google Scholar 

  • Titius, J.D.: Betrachtung über die Natur, vom Herrn Karl Bonnet, pp. 7–8, Leipzig (1766). Transl. by Jaki, S., in: The early history of the Titius-Bode Law. Am. J. Phys. 40, 1014–1023 (1972)

  • Wang, Z., Wu, D., Song, X., Chen, X., Nicholls, S.: Sun–Moon gravitation-induced wave characteristics and climate variation. J. Geophys. Res. 117, D07102 (2012)

    ADS  Google Scholar 

  • Wigley, T.M.L.: The climate of the past 10,000 years and the role 366 of the Sun. In: Stephenson, F.R., Wolfendale, A.W. (eds.) Secular Solar and Geomagnetic Variations in the Last 367 10,000 Years, pp. 209–224. Springer, New York (1988)

    Chapter  Google Scholar 

  • Wilson, I.R.G.: The Venus–Earth–Jupiter spin–orbit coupling model. Pattern Recogn. Phys. 1, 147–158 (2013)

    ADS  Article  Google Scholar 

  • Wolf, R.: Extract of a letter to Mr. Carrington. Mon. Not. R. Astron. Soc. 19, 85–86 (1859)

    ADS  Article  Google Scholar 

  • Wolff, C.L., Patrone, P.N.: A new way that planets can affect the Sun. Sol. Phys. 266, 227–246 (2010)

    ADS  Article  Google Scholar 

  • Wright, J.T., Marcy, G.W., Butler, R.P., Vogt, S.S., Henry, G.W., Isaacson, H., Howard, A.W.: The Jupiter twin HD 154345b. Astrophys. J. 683(1), L63–L66 (2008)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Scafetta.

Appendix

Appendix

A.1 The three frequency solar model

Here I summarize the functions used for constructing the planetary/solar three frequency solar model discussed in Sect. 2 and shown in Fig. 2. This appendix reproduces the Appendix in Scafetta (2012c) for the reader convenience.

The three basic proposed harmonics are:

$$\begin{aligned} h_1(t) =&0.83 \cos \biggl(2\pi \frac{t-2000.475}{9.929656} \biggr), \end{aligned}$$
(11)
$$\begin{aligned} h_2(t) =&1.0 \cos \biggl(2\pi \frac{t-2002.364}{10.87} \biggr), \end{aligned}$$
(12)
$$\begin{aligned} h_3(t) =&0.55 \cos \biggl(2\pi \frac{t-1999.381}{11.862242} \biggr), \end{aligned}$$
(13)

where the relative amplitudes are weighted on the sunspot number record since 1749. Three frequencies derive from the spectrum of the sunspot record (see Fig. 2A) where the two side harmonics at 9.93 and 11.86 year period are theoretically deduced from the tidal oscillations generated by Jupiter and Saturn. The three phases are deduced: from the conjunction date of Jupiter and Saturn, t=2000.475; the perihelion date of Jupiter, t=1999.381; and by regression on the sunspot cycle, t=2002.634.

The basic harmonic model is

$$\begin{aligned} & h_{123}(t)=h_1(t)+h_2(t)+h_3(t), \end{aligned}$$
(14)
$$\begin{aligned} & f_{123}(t)= h_{123}(t) \quad \mathrm{if} \ h_{123}(t)\geq 0, \end{aligned}$$
(15)
$$\begin{aligned} & f_{123}(t)= 0 \quad \mathrm{if}\ h_{123}(t)<0, \end{aligned}$$
(16)

which is depicted in Fig. 2B.

The chosen beat function modulations in generic relative units and their sum are:

$$\begin{aligned} & b_{12}(t)=0.60 \cos \biggl(2\pi \frac{t-1980.528}{114.783} \biggr), \end{aligned}$$
(17)
$$\begin{aligned} & b_{13}(t)=0.40 \cos \biggl(2\pi \frac{t-2067.044}{60.9484} \biggr), \end{aligned}$$
(18)
$$\begin{aligned} & b_{23}(t)=0.45 \cos \biggl(2\pi \frac{t-2035.043}{129.951} \biggr), \end{aligned}$$
(19)
$$\begin{aligned} & b_{123}(t)=b_{12}(t)+b_{13}(t)+b_{23}(t)+1. \end{aligned}$$
(20)

The three relative amplitudes are roughly estimated against Eq. (15). The millennial modulating function is

$$ g_m(t)=A~\cos \biggl(2\pi~\frac{t-2059.686}{983.401} \biggr)+B. $$
(21)

The parameters A and B may be changed according to the application. The two proposed modulated solar/planetary functions are

$$\begin{aligned} & F_{123}(t)=g_m(t) f_{123}(t)\quad \mathrm{with}~A=0.2, B=0.8, \end{aligned}$$
(22)
$$\begin{aligned} & B_{123}(t)=g_m(t) b_{123}(t)\quad \mathrm{with}~A=0.3,B=0.7. \end{aligned}$$
(23)

See Scafetta (2012c) for more details and for a supplement file with the actual data.

A.2 Scafetta (2010) astronomical—temperature spectral coherence

For convenience of the reader Fig. 12 reproduces figures 6B and 9A of Scafetta (2010). Figure 12B shows MEM evaluations of numerous climatic records such as the global surface temperature (G), the northern and southern global surface temperatures (GN and GS), the global, northern and southern land surface temperatures (L, LN, LS) and the global, northern and southern ocean surface temperatures (O, ON, OS). The green bars are the main solar, astronomical and lunar expected harmonics (cf. Fig. 5). It is easy to notice a coherence between the astronomical harmonics and the MEM spectral peaks at multiple frequencies. Figure 12A directly compares the temperature average periods (red) against the astronomical average periods (blue). A χ2 test output among the various frequencies is shown suggesting that the coherence confidence is at the 96 %. Additional calculations and evidences are provided in Scafetta (2010).

Fig. 12
figure 12

Reproduction of figure 6B and 9A of Scafetta (2010) showing [A] the χ2 spectral coherence test and [B] the direct comparison between the MEM curve of several climatic records and the astronomical, solar and lunar harmonics (green bars). See the original paper for details

A.3 Kepler’s diagram of Jupiter–Saturn conjunctions

Figure 13 shows the original diagram of Jupiter–Saturn conjunctions prepared by Kepler (1606). It highlights the date and the constellation position of the great conjunctions, that occur every 20 years, from 1583 to 1763. The 60-year trigon pattern, that involves three consecutive conjunctions, is clearly visible together with its slow millennial rotation. The 20, 60 and 800–1000 year oscillations associated to the movement of Jupiter and Saturn were well known since antiquity and used to construct some kind of astrological-based climate models (Kepler 1606; Iyengar 2009; Ma’sar 2000; Temple 1998). See Scafetta (2012a) for additional details.

Fig. 13
figure 13

The original diagram of Jupiter–Saturn conjunctions prepared by Kepler (1606)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Scafetta, N. Discussion on the spectral coherence between planetary, solar and climate oscillations: a reply to some critiques. Astrophys Space Sci 354, 275–299 (2014). https://doi.org/10.1007/s10509-014-2111-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-014-2111-8

Keywords

  • Solar oscillations
  • Planetary oscillations
  • Synchronization
  • Spectral analysis