Astrophysics and Space Science

, Volume 352, Issue 2, pp 341–352

ACRIM3 and the Total Solar Irradiance database

Original Article

DOI: 10.1007/s10509-014-1961-4

Cite this article as:
Willson, R.C. Astrophys Space Sci (2014) 352: 341. doi:10.1007/s10509-014-1961-4


The effects of scattering and diffraction on the observations of the ACRIMSAT/ACRIM3 satellite TSI monitoring mission have been characterized by the preflight calibration approach for satellite total solar irradiance (TSI) sensors implemented at the LASP/TRF (Laboratory for Atmospheric and Space Physics/Total Solar Irradiance Radiometer Facility). The TRF also calibrates the SI (International System of units) traceability to the NIST (National Institute of Standards and Technology) cryo-radiometric scale. ACRIM3’s self-calibration agrees with NIST to within the uncertainty of the test procedure (∼500 ppm). A correction of ∼5000 ppm was found for scattering and diffraction that has significantly reduced the scale difference between the results of the ACRIMSAT/ACRIM3 and SORCE/TIM satellite experiments. Algorithm updates reflecting more than 10 years of mission experience have been made that further improve the ACRIM3 results by eliminating some thermally driven signal and increasing the signal to noise ratio. The result of these changes is a more precise and detailed picture of TSI variability. Comparison of the results from the ACRIM3, SORCE/TIM and SOHO/VIRGO satellite experiments demonstrate the near identical detection of TSI variability on all sub-annual temporal and amplitude scales during the TIM mission. The largest occurs at the rotational period of the primary solar activity longitudes. On the decadal timescale, while ACRIM3 and VIRGO results exhibit close agreement throughout, TIM exhibits a consistent 500 ppm upward trend relative to ACRIM3 and VIRGO. A solar magnetic activity area proxy for TSI has been used to demonstrate that the ACRIM TSI composite and its +0.037 %/decade TSI trend during solar cycles 21–23 is the most likely correct representation of the extant satellite TSI database. The occurrence of this trend during the last decades of the 20th century supports a more robust contribution of TSI variation to detected global temperature increase during this period than predicted by current climate models.


Total Solar Irradiance SI Calibration Decadal Trends 

Copyright information

© The Author(s) 2014

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Authors and Affiliations

  1. 1.ACRIMCoronadoUSA

Personalised recommendations