Skip to main content
Log in

Electrostatic electron cyclotron harmonic instability near Ganymede

  • Letter
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Jupiter’s moon—Ganymede—is the largest satellite in our solar system. Galileo spacecraft made six close flybys to explore Ganymede. More information was acquired about particle population, magnetic field and plasma waves during these encounters. In this paper, our aim is to study the generation of electrostatic electron cyclotron harmonic (ECH) emissions in the vicinity of Ganymede using the observed particle data. The calculated ECH wave’s growth rates are analyzed in the light of observations of plasma waves along the path of Galileo near Ganymede. Dispersion relation for electrostatic mode is solved to obtain the temporal growth rates. A new electron distribution function, fitted to distribution observed near Ganymede, is used in the calculations. A parametric study is performed to evaluate the effect of loss-cone angle and the ratio of plasma to gyro-frequency on growth rates. It is found that ECH waves growth rates generally decrease as the loss-cone angle is increased. However, the ratio plasma to gyro-frequency has almost no effect on the growth rates. These parameters vary considerably along the Galileo trajectory near Ganymede. This is the first study which relates the occurrence of ECH waves with the particle and magnetic field data in the vicinity of Ganymede. The study of ECH wave growth rate near Ganymede is important for the calculation of pitch angle scattering rates of low-energy electrons and their subsequent precipitation into the thin atmosphere of Ganymede producing ultraviolet emissions. Results of the present study may also be relevant for the upcoming JUNO and JUICE missions to Jupiter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Gov. Print. Off., Washington (1970)

    MATH  Google Scholar 

  • Ashour-Abdalla, M., Kennel, C.F.: Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531–1543 (1978)

    Article  ADS  Google Scholar 

  • Barbosa, D.D., Kurth, W.S.: Superthermal electrons and Bernstein waves in Jupiter’s inner magnetosphere. J. Geophys. Res. 85, 6729–6742 (1980)

    Article  ADS  Google Scholar 

  • Belcher, J.W.: The low energy plasma in the jovian magnetosphere. In: Physics of the Jovian Magnetosphere, pp. 68–105. Cambridge University Press, New York (1983)

    Chapter  Google Scholar 

  • Bolton, S.: The new JUNO mission. In: 36th COSPAR Scientific Assembly, 16–23 July 2006, Beijing, Cnhina (CD-ROM, 3775)

  • Christon, S.P., Mitchell, D.G., Williams, D.J., et al.: Energy spectra of plasmasheet ions electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions. J. Geophys. Res. 93, 2562–2572 (1988)

    Article  ADS  Google Scholar 

  • Clemmow, P.C., Dougherty, J.P.: Electrodynamics of Particles and Plasmas, p. 457. Addison-Wesley, Boston (1969)

    Google Scholar 

  • Divine, N., Garrett, H.B.: Charged particle distributions in Jupiter’s magnetosphere. J. Geophys. Res. 88, 6889–6903 (1983)

    Article  ADS  Google Scholar 

  • Eviatar, A., Vasyliunas, V.M., Gurnett, D.A.: The ionosphere of Ganymede. Planet. Space Sci. 49, 327–336 (2001)

    Article  ADS  Google Scholar 

  • Grasset, O., Douherty, M.K., Coustenis, A., et al.: Jupiter icy moons explorer (JUICE): an ESA mission to orbit Ganymede and to characterize the Jupiter system. Planet. Space Sci. 78, 1–21 (2013)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Scarf, F.L.: Plasma wave observations near Jupiter: initial results from Voyager 2. Science 206, 987–991 (1979)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Roux, A., Bolton, S.J., Kennel, C.F.: Evidence for a magnetosphere at Ganymede from plasma-wave observations by the Galileo spacecraft. Nature 384, 535–537 (1996)

    Article  ADS  Google Scholar 

  • Horne, R.B., Thorne, R.M., Glauert, S.A., Menietti, J.D., Shprits, Y.Y., Gurnett, D.A.: Gyro-resonant electron acceleration at Jupiter. Nature 4, 301–304 (2008)

    Google Scholar 

  • Kennel, C.F., Petschek, H.E.: Limit on stably trapped particles fluxes. J. Geophys. Res. 71, 1–28 (1966)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Russell, C.T., Walker, R.J., Warnecke, J., Coroniti, F.V., Polanskey, C., Southwood, D.J., Schubert, G.: Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Coroniti, F.V., Joy, S., Russell, C.T., Walker, R.J., Warnecke, J., Bennett, L., Polanskey, C.: The magnetic field and magnetosphere of Ganymede. Geophys. Res. Lett. 24, 2155–2158 (1997)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Warnecke, J., Bennett, L., Joy, S., Khurana, K.K., Linker, J.A., Russell, C.T., Walker, R.J., Polanskey, C.: Ganymede’s magnetosphere: magnetometer overview. J. Geophys. Res. 103, 19963–19972 (1998)

    Article  ADS  Google Scholar 

  • Kivelson, M.G., Khurana, K.K., Volwerk, M.: The permanent and inductive magnetic moment of Ganymede. Icarus 157, 507–522 (2002)

    Article  ADS  Google Scholar 

  • Kurth, W.S., Craven, J.D., Frank, L.A., Gurnett, D.A.: Intense electrostatic waves near the upper hybrid resonance. J. Geophys. Res. 84, 4145–4164 (1979)

    Article  ADS  Google Scholar 

  • Kurth, W.S., Gurnett, D.A., Roux, A., Bolton, S.J.: Ganymede: a new radio source. Geophys. Res. Lett. 24, 2167–2170 (1997)

    Article  ADS  Google Scholar 

  • Mathews, J., Walker, R.L.: Mathematical Methods of Physics. Benjamin, New York (1965)

    MATH  Google Scholar 

  • McGrath, M.A., Jia, X., Retherford, K., Feldman, P.D., Strabel, D.F., Saur, J.: Aurora on Ganymede. J. Geophys. Res. 118, 2043–2054 (2013)

    Article  Google Scholar 

  • Menietti, J.D., Shprits, Y.Y., Horne, R.B., Woodfield, E.E., Hospodarsky, G.B., Gurnett, D.A.: Chorus, ECH and Z mode emissions observed at Jupiter and Saturn and possible electron acceleration. J. Geophys. Res. 117, A12214 (2012). doi:10.1029/2012JA018187

    Article  ADS  Google Scholar 

  • Meredith, N.P., Horne, R.B., Thorne, R.M., Anderson, R.R.: Survey of upper band chorus and ECH waves: Implication for the diffuse aurora. J. Geophys. Res. 114, A07218 (2009). doi:10.1029/2009JA014230

    ADS  Google Scholar 

  • Meredith, N.P., Johnstone, A.D., Szita, S., Horne, R.B., Anderson, R.R.: Pancake electron distributions in the outer radiations belts. J. Geophys. Res. 104, 12431–12444 (1999)

    Article  ADS  Google Scholar 

  • Ni, B., Thorne, R.M., Horne, R.B., Meredith, N.P., Shprits, Y.Y., Chen, L., Li, W.: Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation. 1. Evaluation for electrostatic cyclotron harmonic waves. J. Geophys. Res. 116, A04218 (2011). doi:10.1029/2010JA016232

    Article  ADS  Google Scholar 

  • Ni, B., Liang, J., Thorne, R.M., Angelopoulos, V., et al.: Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in outer magnetosphere: a detailed case study. J. Geophys. Res. 117, A01218 (2012). doi:10.1029/2011JA017095

    Article  ADS  Google Scholar 

  • Paranicas, C., Paterson, W.R., Cheng, A.F., Mauk, B.H., McEntire, R.W., Frank, L.A., Williams, D.J.: Energetic particle observations near Ganymede. J. Geophys. Res. 104, 17459–17469 (1999)

    Article  ADS  Google Scholar 

  • Ronnmark, K., Borg, H., Christiansen, P.J., Gough, M.P., Jones, D.: Banded electron cyclotron harmonic instability—a first comparison of theory and experiment. Space Sci. Rev. 22, 401–417 (1978)

    Article  ADS  Google Scholar 

  • Showman, A., Malhotra, R.: The Galilean satellites. Science 286, 77–84 (1999)

    Article  ADS  Google Scholar 

  • Stone, R.G., et al.: Ulysses radio and plasma wave observations in the Jupiter environments. Science 257, 1524–1531 (1992)

    Article  ADS  Google Scholar 

  • Summers, D., Thorne, R.M.: Plasma microinstabilities driven by loss-cone distributions. J. Plasma Phys. 53, 293–315 (1995)

    Article  ADS  Google Scholar 

  • Summers, D., Ni, B., Meredith, N.P.: Time scale for radiation belt electron acceleration and loss due to resonant wave-particle interactions. 2. Evaluation for VLF Chorus, ELF hiss, and electromagnetic ion-cyclotron waves. J. Geophys. Res. 112, A04207 (2007). doi:10.1029/2006JA011993

    ADS  Google Scholar 

  • Susanna, M., Ferenc, V., William, M., Gerald, S.: Numerical simulations of the orbits of the Galilean satellites. Icarus 159, 500–504 (2002)

    Article  Google Scholar 

  • Tripathi, A.K., Singhal, R.P.: Electrostatic electron cyclotron harmonic instability due to energetic electron in Jupiter’s magnetosphere. J. Geophys. Res. 110, A12205 (2005). doi:10.1029/2005JA011113

    Article  ADS  Google Scholar 

  • Tripathi, A.K., Singhal, R.P., Singh, K.P., Singh, O.N. II: Pitch-angle diffusion by whistler mode waves in the jovian magnetosphere and diffuse auroral precipitation. Icarus 225, 424–431 (2013)

    Article  ADS  Google Scholar 

  • Tripathi, A.K., Singhal, R.P., Singh, K.P., Singh, O.N. II: Whistler mode instability and pitch-angle diffusion near Ganymede. Planet. Space Sci. 92, 150–156 (2014)

    Article  ADS  Google Scholar 

  • Williams, D.J., Mauk, B.: Pitch-angle diffusion at Jupiter’s moon Ganymede. J. Geophys. Res. 102, 24283–24287 (1997)

    Article  ADS  Google Scholar 

  • Williams, D.J., McEntire, R.W., Jaskulek, S., Wilken, B.: The Galileo energetic particles detector. Space Sci. Rev. 60, 385–412 (1992)

    Article  ADS  Google Scholar 

  • Williams, D.J., Mauk, B., McEntire, R.W.: Properties of Ganymede’ magnetosphere as revealed by energetic particle observations. J. Geophys. Res. 103, 17523–17534 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported with financial assistance provided by the Planetary Sciences and Exploration Programme (PLANEX), Indian Space Research Organization (ISRO), PRL, Ahemdabad under the sanctioned project scheme P-32-17. Calculations reported in the present work were carried out at the Computer Centre, Banaras Hindu University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, A.K., Singhal, R.P., Singh, K.P. et al. Electrostatic electron cyclotron harmonic instability near Ganymede. Astrophys Space Sci 352, 421–427 (2014). https://doi.org/10.1007/s10509-014-1957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-014-1957-0

Keywords

Navigation