Skip to main content

Hawking radiation and entropy of Kerr-Newman black hole

Abstract

The entropy correction of Kerr-Newman black hole is investigated using the Hamilton-Jacobi method beyond semiclassical approximation. To get entropy correction, the inverse of the sum of square of event horizon (r+) and the square of rotational parameter a of the black hole is taken as the proportionality parameter for quantum corrections of the action Ii to the semiclassical action I0. It has been shown that as quantum effects are taken into account the corrections to the Bekenstein-Hawking entropy of the stationary black hole include a logarithmic term and an inverse area term beyond the semiclassical approximation.

This is a preview of subscription content, access via your institution.

References

  1. Akbar, M., Saifullah, K.: arXiv:1002.3581v1, arXiv:1002.3901 (2010)

  2. Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Energy Phys. 0505, 014 (2005)

    ADS  Article  Google Scholar 

  3. Banerjee, R., Majhi, B.R.: J. High Energy Phys. 06, 095 (2008)

    ADS  Article  Google Scholar 

  4. Banerjee, R., Majhi, B.R.: Phys. Lett. B 674, 218 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  5. Banerjee, R., Modak, S.K.: J. High Energy Phys. 05, 063 (2009)

    ADS  Article  Google Scholar 

  6. Bekenstein, J.D.: Phys. Rev. D 7, 2333 (1973)

    ADS  MathSciNet  Article  Google Scholar 

  7. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    ADS  Article  Google Scholar 

  8. Chen, Y.D., Jiang, Q.Q., Yang, S.Z.: Class. Quantum Gravity 25, 205022 (2005)

    ADS  Article  Google Scholar 

  9. Hawking, S.W.: Nature 248, 30 (1974)

    ADS  Article  Google Scholar 

  10. Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975)

    ADS  Article  Google Scholar 

  11. Jiang, Q.Q., Wu, S.Q., Cai, X.: Phys. Rev. D 73, 064003 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  12. Kerner, R., Mann, R.B.: Class. Quantum Gravity 25, 095014 (2008)

    ADS  Article  Google Scholar 

  13. Majhi, B.R.: Phys. Rev. D 79, 044005 (2009)

    ADS  Article  Google Scholar 

  14. Newman, E.T., Janis, A.I.: J. Math. Phys. 6, 915 (1965)

    ADS  Article  Google Scholar 

  15. Page, D.: Phys. Rev. D 13, 198 (1976)

    ADS  Article  Google Scholar 

  16. Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  17. Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 024007 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  18. Yuan, Y.Q., Zeng, X.X., Zhou, Z.J., Jin, L.P.: Gen. Relativ. Gravit. 41, 2771 (2009)

    ADS  Article  Google Scholar 

  19. Zeng, X.X., Yang, S.Z.: Gen. Relativ. Gravit. 40, 2107 (2008)

    ADS  Article  Google Scholar 

  20. Zeng, X.X., Li, L., Hu, X.Y.: Sci. China 53, 116 (2010)

    Article  Google Scholar 

  21. Zhang, J., Zhao, Z.: Phys. Lett. B 618, 14 (2005)

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. Ibungochouba Singh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ibungochouba Singh, T., Ablu Meitei, I. & Yugindro Singh, K. Hawking radiation and entropy of Kerr-Newman black hole. Astrophys Space Sci 352, 737–741 (2014). https://doi.org/10.1007/s10509-014-1927-6

Download citation

Keywords

  • Kerr-Newman black hole
  • Hawking radiation
  • Fermions
  • Entropy correction