Cosmology from induced matter model applied to 5D f(R,T) theory

Abstract

It is well known that the universe is undergoing a phase of accelerated expansion. Plenty of models have already been created with the purpose of describing what causes this non-expected cosmic feature. Among them, one could quote the extradimensional and the f(R,T) gravity models. In this work, in the scope of unifying Kaluza-Klein extradimensional model with f(R,T) gravity, cosmological solutions for density and pressure of the universe are obtained from the induced matter model application. Particular solutions for vacuum quantum energy and radiation are also shown.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adhav, K.S.: Astrophys. Space Sci. 339, 365 (2012)

    ADS  Article  MATH  Google Scholar 

  2. Aghmohammad, A.: Phys. Scr. 80, 065008 (2009)

    ADS  Article  Google Scholar 

  3. Allen, S.W., et al.: Mon. Not. R. Astron. Soc. 353, 457 (2004)

    ADS  Article  Google Scholar 

  4. Arkani-Hamed, N., et al.: Phys. Lett. B 429, 263 (1998)

    ADS  Article  MathSciNet  Google Scholar 

  5. Baffou, E.H., et al.: (2013). arXiv:1303.5076 [gr-qc]

  6. Bamba, K., et al.: Astrophys. Space Sci. 342, 155 (2012)

    ADS  Article  Google Scholar 

  7. Banerjee, A., et al.: Class. Quantum Gravity 11, 1405 (1994)

    ADS  Article  MATH  Google Scholar 

  8. Bessada, D., Miranda, O.D.: Phys. Rev. D 88, 083530 (2013)

    ADS  Article  Google Scholar 

  9. Bilic, N., et al.: Phys. Rev. B 535, 17 (2002)

    MATH  Google Scholar 

  10. Binetruy, P., et al.: Phys. Lett. B 477, 285 (2000)

    ADS  Article  MathSciNet  Google Scholar 

  11. Butkov, E.: Mathematical Physics. Addison-Wesley, Boston (1968)

    Google Scholar 

  12. Chatterjee, S., Banerjee, A.: Class. Quantum Gravity 10, L1 (1993)

    ADS  Article  MathSciNet  Google Scholar 

  13. Chatterjee, S., et al.: Class. Quantum Gravity 11, 371 (1994)

    ADS  Article  MATH  Google Scholar 

  14. Chiba, T., et al.: Mon. Not. R. Astron. Soc. 289, L5 (1997)

    ADS  Article  Google Scholar 

  15. Collins, C.B., et al.: Gen. Relativ. Gravit. 12, 805 (1980)

    ADS  Article  MATH  Google Scholar 

  16. Darabi, F.: Mod. Phys. Lett. A 25, 1635 (2010)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  17. de Leon, J.P., Wesson, P.S.: J. Math. Phys. 34, 4080 (1993)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  18. Dvali, G., et al.: Phys. Lett. B 485, 208 (2000)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  19. Eisenstein, D.J., et al.: Astrophys. J. 633, 560 (2005)

    ADS  Article  Google Scholar 

  20. Farhoudi, M.: Int. J. Mod. Phys. D 14, 1233 (2005)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  21. Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover, New York (1982)

    Google Scholar 

  22. Freese, K., et al.: Nucl. Phys. B 287, 797 (1987)

    ADS  Article  Google Scholar 

  23. Gogberashvili, M.: Int. J. Mod. Phys. D 11, 1635 (2002)

    ADS  Article  MathSciNet  Google Scholar 

  24. Halpern, P.: Phys. Rev. D 66, 027503 (2002)

    ADS  Article  MathSciNet  Google Scholar 

  25. Halpern, P.: Phys. Rev. D 63, 024009 (2001)

    ADS  Article  MathSciNet  Google Scholar 

  26. Harko, T., et al.: Phys. Rev. D 84, 024020 (2011)

    ADS  Article  Google Scholar 

  27. Houndjo, M.J.S.: Int. J. Mod. Phys. D 21, 1250003 (2012)

    ADS  Article  MathSciNet  Google Scholar 

  28. Houndjo, M.J.S., Piattella, O.F.: Int. J. Mod. Phys. D 21, 1250024 (2012)

    ADS  Article  Google Scholar 

  29. Jamil, M., et al.: Eur. Phys. J. C 72, 1999 (2012)

    ADS  Article  Google Scholar 

  30. Jimenez, R., et al.: Astrophys. J. 593, 622 (2003)

    ADS  Article  Google Scholar 

  31. Lima, J.A.S.: Phys. Rev. D 53, 4280 (1996)

    ADS  Article  Google Scholar 

  32. Lima, J.A.S., et al.: Class. Quantum Gravity 25, 205006 (2008)

    ADS  Article  Google Scholar 

  33. Linder, E.V.: Gen. Relativ. Gravit. 40, 329 (2008)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  34. Lue, A., Starkman, G.: Phys. Rev. D 67, 064002 (2003)

    ADS  Article  Google Scholar 

  35. McManus, D.J.: J. Math. Phys. 35, 4889 (1994)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  36. Mishra, B., Sahoo, P.K.: Astrophys. Space Sci. 349, 491 (2014)

    ADS  Article  Google Scholar 

  37. Moraes, P.H.R.S., Miranda, O.D.: AIP Conf. Proc. 1483, 435 (2012)

    ADS  Google Scholar 

  38. Nojiri, S., Odintson, S.D.: Phys. Rev. D 68, 123512 (2003)

    ADS  Article  Google Scholar 

  39. Overduin, J.M., Wesson, P.S.: Phys. Rep. 283, 303 (1997)

    ADS  Article  MathSciNet  Google Scholar 

  40. Ozer, M., Taha, O.: Phys. Rev. B 71, 363 (1986)

    Google Scholar 

  41. Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    ADS  Article  Google Scholar 

  42. Perlmutter, S., et al.: Astrophys. J. 517, 5 (1999)

    Article  Google Scholar 

  43. Planck Collaboration: Astrophys. J. (2013). arXiv:1303.5076

  44. Pradhan, S., Amirhashchi, H.: Astrophys. Space Sci. 332, 441 (2011)

    ADS  Article  MATH  Google Scholar 

  45. Ram, S., Priyanka: Astrophys. Space Sci. 347, 389 (2013)

    ADS  Article  Google Scholar 

  46. Randall, L., Sundrum, R.: Phys. Rev. Lett. 83, 3370 (1999)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  47. Reddy, D.R.K., et al.: Astrophys. Space Sci. 342, 249 (2012a)

    ADS  Article  Google Scholar 

  48. Reddy, D.R.K., et al.: Int. J. Theor. Phys. 51, 3222 (2012b)

    Article  MATH  Google Scholar 

  49. Reddy, D.R.K., et al.: Astrophys. Space Sci. 346, 261 (2013a)

    ADS  Article  MATH  Google Scholar 

  50. Reddy, D.R.K., et al.: Int. J. Theor. Phys. 52, 239 (2013b)

    Article  MATH  Google Scholar 

  51. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    ADS  Article  Google Scholar 

  52. Salam, A., Sezgin, E.: Supergravity in Diverse Dimensions. North-Holland, Amsterdam (1989)

    Google Scholar 

  53. Samanta, G.C., Dhal, S.N.: Int. J. Theor. Phys. 52, 1334 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  54. Samanta, G.C., Dhal, S.N., Mishra, B.: Astrophys. Space Sci. 346, 233 (2013)

    ADS  Article  MATH  Google Scholar 

  55. Shabani, H., Farhoudi, M.: Phys. Rev. D 88, 044048 (2013)

    ADS  Article  Google Scholar 

  56. Sharif, M., Khanum, F.: Astrophys. Space Sci. 334, 209 (2011)

    ADS  Article  MATH  Google Scholar 

  57. Sharif, M., Zubair, M.: Astrophys. Space Sci. 349, 529 (2014)

    ADS  Article  Google Scholar 

  58. Singh, J.K., Sharma, N.K.: Int. J. Theor. Phys. 53, 1424 (2014)

    Article  MathSciNet  Google Scholar 

  59. Turner, M.S., White, M.: Phys. Rev. D 56, r4439 (1997)

    ADS  Article  Google Scholar 

  60. Vollick, D.N.: Class. Quantum Gravity 21, 3813 (2004)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  61. Weinberg, S.: Rev. Mod. Phys. 61, 1 (1989)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  62. Wesson, P.S.: Mod. Phys. Lett. A 7, 921 (1992a)

    ADS  Article  Google Scholar 

  63. Wesson, P.S.: Astrophys. J. 394, 19 (1992b)

    ADS  Article  Google Scholar 

  64. Wesson, P.S.: Space, Time, Matter. Modern Kaluza-Klein Theory. World Scientific, Singapore (2000)

    Google Scholar 

  65. Wesson, P.S.: Int. J. Mod. Phys. D 10, 905 (2001)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  66. Wesson, P.S., de Leon, J.P.: J. Math. Phys. 33, 3883 (1992)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  67. Wesson, P.S., de Leon, J.P.: Astron. Astrophys. 294, 1 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank T.S. Morais for encouraging and supporting the development of this work and O.D. Miranda for introducing me the Wesson’s induced matter model, as well as for having some important discussions about the subject. I am grateful for the suggestions of the anonymous referee, which certainly have contributed for a conceptual enrichment of the paper. I would also like to thank CAPES for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. H. R. S. Moraes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moraes, P.H.R.S. Cosmology from induced matter model applied to 5D f(R,T) theory. Astrophys Space Sci 352, 273–279 (2014). https://doi.org/10.1007/s10509-014-1895-x

Download citation

Keywords

  • Kaluza-Klein theory
  • Cosmological models
  • f(R,T) gravity