Advertisement

Astrophysics and Space Science

, Volume 351, Issue 1, pp 213–218 | Cite as

Thermodynamic models of the distribution of life-related organic molecules in the interstellar medium

  • Michel Y. Dolomatov
  • Nadezhda A. Zhuravleva
Original Article

Abstract

New equilibrium thermodynamic distribution models of organic substances important to life in giant molecular clouds are suggested. These models use the normal distribution law of the standard enthalpy and the free energy (Helmholtz energy) for various organic molecules, amino acids, and nucleic acid components. These models were used to forecast organic molecule resources in the interstellar medium of the observable universe. The resources of the main biological molecules were estimated from radio-astronomical data.

Keywords

Giant molecular clouds Free energy (Helmholtz energy) Standard enthalpy of formation Amino acids Nucleobases Life-related organic molecules Interstellar medium 

Supplementary material

10509_2014_1844_MOESM1_ESM.jpg (510 kb)
(JPG 510 kB)
10509_2014_1844_MOESM2_ESM.jpg (906 kb)
(JPG 906 kB)
10509_2014_1844_MOESM3_ESM.jpg (788 kb)
(JPG 788 kB)
10509_2014_1844_MOESM4_ESM.jpg (725 kb)
(JPG 725 kB)

References

  1. Bains, I., Brisbin, D., Cunningham, M., Sparks, P., Wong, T.: Molecular line mapping of the giant molecular cloud associated with RCW 106 I. 13CO. Mon. Not. R. Astron. Soc. 367(4), 1609–1628 (2006) CrossRefADSGoogle Scholar
  2. Binney, J., Merrifield, M.: Galactic Astronom. Princeton University Press, Princeton (1998) Google Scholar
  3. Book Series Cellular Origin 2000–2013: Life in extreme habitats and astrobiology. In: Seckbach, J. (ed.) (2000–2013) 24 Volumes. Springer, Berlin (2000–2013) Google Scholar
  4. Cami, J., Bernard-Salas, J., Peeters, E., Elizabeth Malek, S.: Detection of C60 and C70 in a Young Planetary Nebula. Science 329(5996), 1180–1182 (2010) CrossRefADSGoogle Scholar
  5. Dolomatov, M.Y.: Some physical and chemical aspects of simulating properties of multicomponent systems in the conditions of extreme influences. Z. Vses. Him. Obsestva Im. D.I. Mendeleeva 35(5), 632–638 (1990) Google Scholar
  6. Dolomatov, MY.: Features of equilibrium thermodynamics complex systems with chaos of chemical constitutions and allocation of organic matter in the space. In: Abstracts of International Conference on Complex Systems, USA, Florida, Texas (2004) Google Scholar
  7. Dolomatov, C.Y.: Fragments of the Real Substance Theory from the Hydrocarbon Systems to the Galaxies. Chemistry, Moscow (2005) Google Scholar
  8. Dolomatov, M.Y., Kostyleva, E.V.: Characteristics of the organic substances abiogenic synthesis in space natural systems and the problem of oil origin. In: Oil Refining and Petrochemical Industry: The Materials of All-Russia Scientific Practical Conference, Ufa, pp. 8–14 (2001) Google Scholar
  9. Dolomatov, M.Y., Zhuravleva, N.A.: The thermodynamic models of molecular chemical compound distribution in the giant molecular clouds medium. Appl. Phys. Res. 4(4) (2012). doi: 10.5539/apr.v4n4p149
  10. Hoyle, F., Wickramasinghe, N.C.: Astronomical Origins of Life: Steps Towards Panspermia. Kluwer Academic, Dordrecht (2000) CrossRefGoogle Scholar
  11. Kolesnichenko, A.V., Marov, M.Y.: Mechanics bases of heterogeneous environments in a circumsolar protoplanetary cloud: influence of firm particles on turbulence in a disk. Sol. Syst. Res. 40(1), 2–62 (2006) CrossRefADSGoogle Scholar
  12. Kwok, S.: Stardust. The Cosmic Seeds of Life. Springer, Berlin Heidelberg (2013) Google Scholar
  13. Landau, L.D., Lifshitz, E.M.: Statistical Physics, 3rd edn. Butterworth-Heinemann, Oxford (1996) Google Scholar
  14. Lee, Y., Snell, R.L., Dickman, R.L.: The cold, massive molecular cloud G216-2.5. 2: structure and kinematics. Astrophys. J. 432(1), 167–180 (1996) ADSGoogle Scholar
  15. Lovas, F.: Recommended rest frequencies for observed interstellar molecular microwave transitions. J. Phys. Chem. Ref. (1992). doi:  10.1063/1.555920
  16. Makalkin, A.B., Ziglina, I.N.: Modeling formation of self-gravitating dust condensations and original planetesimals in a protoplanetary disk. In: The Third Moscow Solar System Symposium, Moscow, Space Research Institute, 3MS3-PC-03 (2012) Google Scholar
  17. Makalkin, A.B., Ziglina, I.N., Dorofeeva, V.A., Safronov, V.S.: Structure of the protoplanetary disk embedded within the infalling envelope. In: Celnikier, L., Tran Thanh Van, J. (eds.) Planetary Systems: The Long View, pp. 73–76. Editions Frontières, Singapore (1998) Google Scholar
  18. Maloney, P.: Size-density relations in dark clouds: non-LTE effects. In: NASA. Ames Research Center Summer School on Interstellar Processes: Abstracts of Contributed Papers, pp. 45–46 (1986). (SEE N87-15043 06-90) Google Scholar
  19. Marov, M.Y., Kolesnichenko, A.V.: Turbulence and Selforganizing: Problems Modelling of Space and Environments, p. 563. Springer, Berlin (2012) Google Scholar
  20. Norman, H.: Horowitz to Utopia and Back: The Search for Life in the Solar System. W.H. Freeman, New York (1986) Google Scholar
  21. Rudnitskiy, G.: Interstellar molecular clouds. Earth and Universe. (1999). http://ziv.telescopes.ru/latest.html
  22. Sakamoto, S.: Physical conditions of molecular gas in the galaxy. Publ. Astron. Soc. Pac. 106, 1112 (1996) CrossRefADSGoogle Scholar
  23. Tsvetkov, A.G., Shematovich, V.I.: Kinetic Monte-Carlo method for simulating of astrochemical kinetics: trial calculations of formation of molecular hydrogen on interstellar dust particles. Sol. Syst. Res. 43(4), 315–327 (2009) CrossRefGoogle Scholar
  24. Tsvetkov, A.G., Shematovich, V.I.: Kinetic Monte-Carlo method for simulating astrochemical kinetics: hydrogen chemistry in diffusion clouds. Sol. Syst. Res. 44(3), 177–188 (2010) CrossRefADSGoogle Scholar
  25. Ulmschneider, P.: Intelligent Life in the Universe. Adv. Astrobiol. Biogeophys. Springer, Berlin Heidelberg (2006). doi: 10.1007/11614371 Google Scholar
  26. Universität zu Köln: Molecules in Space. Universität zu Köln. http://www.astro.uni-koeln.de/cdms/molecules. (2013). Accessed 25 August 2013
  27. Vasyunin, A.: Development of the theory of numerical simulation of the molecular composition of the interstellar medium. Ph.D. Dissertation, Moscow (2008) Google Scholar
  28. Wickramasinghe, C.: Panspermia according to Hoyle. Astrophys. Space Sci. 285, 2:535–538 (2003) ADSGoogle Scholar
  29. Wickramasinghe, J.T., Wickramasinghe, N.C., Napier, W.M.: Comets and the Origins of Life. World Scientific, Singapore (2011) Google Scholar
  30. Willttet, D.C.B.: Planetary and interstellar processes relevant to the origins of life. In: Research Center Summer School on Interstellar Processes: Abstracts of Contributed Papers, pp. 45–46. Springer, Dordrecht (1998) (SEE N87-15043 06-90) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michel Y. Dolomatov
    • 1
    • 2
  • Nadezhda A. Zhuravleva
    • 1
    • 3
    • 4
  1. 1.Physics of Electronic Processes and NanophysicsUfa State Academy of Economics and ServiceUfaRussian Federation
  2. 2.Physical Electronics and Nanophysics DepartmentBashkir State UniversityUfaRussian Federation
  3. 3.Economic Informatics DepartmentUfa State Aviation Technical University (USATU)UfaRussian Federation
  4. 4.UfaRussian Federation

Personalised recommendations