Astrophysics and Space Science

, Volume 348, Issue 1, pp 25–39 | Cite as

Empirical evidences for a planetary modulation of total solar irradiance and the TSI signature of the 1.09-year Earth-Jupiter conjunction cycle

Original Article

Abstract

The time series of total solar irradiance (TSI) satellite observations since 1978 provided by ACRIM and PMOD TSI composites are studied. We find empirical evidence for planetary-induced forcing and modulation of solar activity. Power spectra and direct data pattern analysis reveal a clear signature of the 1.09-year Earth-Jupiter conjunction cycle, in particular during solar cycle 23 maximum. This appears to suggest that the Jupiter side of the Sun is slightly brighter during solar maxima. The effect is observed when the Earth crosses the Sun-Jupiter conjunction line every 1.09 years. Multiple spectral peaks are observed in the TSI records that are coherent with known planetary harmonics such as the spring, orbital and synodic periods among Mercury, Venus, Earth and Jupiter: the Mercury-Venus spring-tidal cycle (0.20 year); the Mercury orbital cycle (0.24 year); the Venus-Jupiter spring-tidal cycle (0.32 year); the Venus-Mercury synodic cycle (0.40 year); the Venus-Jupiter synodic cycle (0.65 year); and the Venus-Earth spring tidal cycle (0.80 year). Strong evidence is also found for a 0.5-year TSI cycle that could be driven by the Earth’s crossing the solar equatorial plane twice a year and may indicate a latitudinal solar-luminosity asymmetry. Because both spring and synodic planetary cycles appear to be present and the amplitudes of their TSI signatures appear enhanced during sunspot cycle maxima, we conjecture that on annual and sub-annual scales both gravitational and electro-magnetic planet-sun interactions and internal non-linear feedbacks may be modulating solar activity. Gravitational tidal forces should mostly stress spring cycles while electro-magnetic forces could be linked to the solar wobbling dynamics, and would mostly stress the synodic cycles. The observed statistical coherence between the TSI records and the planetary harmonics is confirmed by three alternative tests.

Keywords

Solar dynamo Solar total irradiance Helioseismology Planet-star interactions Magnetohydrodynamics (MHD) 

References

  1. Abreu, J.A., Beer, J., Ferriz-Mas, A., McCracken, K.G., Steinhilber, F.: Astron. Astrophys. 548A, 88A (2012) ADSCrossRefGoogle Scholar
  2. Baliunas, S.L., et al.: Astrophys. J. 438, 269 (1995) ADSCrossRefGoogle Scholar
  3. Ball, W.T., Unruh, Y.C., Krivova, N.A., Solanki, S., Wenzler, T., Mortlock, D.J., Jaffe, A.H.: Astron. Astrophys. 541, A27 (2012) ADSCrossRefGoogle Scholar
  4. Bendandi, R.: Un Principio Fondamentale dell’Universo. S.T.E. Faenza, Italy (1931) Google Scholar
  5. Bigg, E.K.: Astron. J. 72, 463 (1967) ADSCrossRefGoogle Scholar
  6. Bond, G., et al.: Science 294, 2130 (2001) ADSCrossRefGoogle Scholar
  7. Brown, E.W.: Mon. Not. R. Astron. Soc. 60, 599 (1900) ADSGoogle Scholar
  8. Caballero, R., Valdes-Galicia, J.F.: Sol. Phys. 213, 413 (2003) ADSCrossRefGoogle Scholar
  9. Callebaut, D.K., de Jager, C., Duhau, S.: J. Atmos. Sol.-Terr. Phys. 80, 73 (2012) ADSCrossRefGoogle Scholar
  10. Charvátová, I., Střeštík, J.: J. Atmos. Sol.-Terr. Phys. 53, 1019 (1991) ADSCrossRefGoogle Scholar
  11. Chylek, P., et al.: Geophys. Res. Lett. 39, L09705 (2012) ADSCrossRefGoogle Scholar
  12. Cionco, R.G., Compagnucci, R.H.: Adv. Space Res. 50, 1434 (2012) ADSCrossRefGoogle Scholar
  13. Courtillot, V., Le Mouel, J.L., Mayaud, P.N.: J. Geophys. Res. 82, 2641 (1977) ADSCrossRefGoogle Scholar
  14. Cuntz, M., Saar, S.H., Musielak, Z.E.: APJ 533, L151 (2000) ADSCrossRefGoogle Scholar
  15. Doodson, A.T.: Proc. R. Soc. Lond. Ser. A 100(704), 305–329 (1921) ADSCrossRefGoogle Scholar
  16. Duric, N.: Advanced Astrophysics. Cambridge University Press, Cambridge (2004) Google Scholar
  17. Fairbridge, R.W., Shirley, J.H.: Sol. Phys. 10, 191 (1987) ADSCrossRefGoogle Scholar
  18. Frick, P., Galyagin, D., Hoyt, D.V., Nesme-Ribes, E., Schatten, K.H., Sokoloff, D., Zakharov, V.: Astron. Astrophys. 328, 670 (1997) ADSGoogle Scholar
  19. Fröhlich, C.: Space Sci. Rev. 125, 53 (2006) ADSCrossRefGoogle Scholar
  20. Ghil, M., et al.: Rev. Geophys. 40, 3.1–3.41 (2002) CrossRefGoogle Scholar
  21. Gurdemir, L., Redfield, S., Cuntz, M.: Aust. J. Chem. 29, 141 (2012) Google Scholar
  22. Hung, C.-C.: NASA/TM-2007-214817 (2007) Google Scholar
  23. Jiang, J., Chatterjee, P., Choudhuri, A.R.: Mon. Not. R. Astron. Soc. 381, 1527 (2007) ADSCrossRefGoogle Scholar
  24. Jose, P.D.: Astron. J. 70, 193 (1965) ADSCrossRefGoogle Scholar
  25. Juckett, D.A.: Sol. Phys. 191, 201 (2000) ADSCrossRefGoogle Scholar
  26. Juckett, D.A.: Astron. Astrophys. 399, 731 (2003) ADSCrossRefGoogle Scholar
  27. Kelvin (Lord, Thomson, W.): Proc., Inst. Civ. Eng. 65, 3 (1881) Google Scholar
  28. Kilcik, A., Ozguc, A., Rozelot, J.P., Atas, T.: Sol. Phys. 264, 255 (2010) ADSCrossRefGoogle Scholar
  29. Kopp, A., Schilp, S., Preusse, S.: Astrophys. J. 729, 116 (2011) ADSCrossRefGoogle Scholar
  30. Landscheidt, T.: Sol. Phys. 189, 415 (1999) ADSCrossRefGoogle Scholar
  31. Leal-Silva, M.C., Velasco Herrera, V.M.: J. Atmos. Sol.-Terr. Phys. 89, 98 (2012) ADSCrossRefGoogle Scholar
  32. Luby, W.A.: Pop. Astron. 56, 252 (1948) ADSGoogle Scholar
  33. Ogurtsov, M.G., Nagovitsyn, Y.A., Kocharov, G.E., Jungner, H.: Sol. Phys. 211, 371 (2002) ADSCrossRefGoogle Scholar
  34. Pap, J., Tobiska, W.K., Bouwer, S.D.: Sol. Phys. 129, 165 (1990) ADSCrossRefGoogle Scholar
  35. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1997) Google Scholar
  36. Poppenhaeger, K., Schmitt, J.H.M.M.: Astrophys. J. 735, 59 (2011) ADSCrossRefGoogle Scholar
  37. Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) CrossRefGoogle Scholar
  38. Qian, W.H., Lu, B.: Chin. Sci. Bull. 55, 4052 (2010) CrossRefGoogle Scholar
  39. Rieger, E., Kanbach, G., Reppin, C., Share, G.H., Forrest, D.J., Chupp, E.L.: Nature 312, 623 (1984) ADSCrossRefGoogle Scholar
  40. Scafetta, N., West, B.J.: Phys. Rev. Lett. 90, 248701 (2003) ADSCrossRefGoogle Scholar
  41. Scafetta, N., Grigolini, P., Imholt, T., Roberts, J.A., West, B.J.: Phys. Rev. E 69, 026303 (2004) ADSCrossRefGoogle Scholar
  42. Scafetta, N., West, B.J.: Complexity 10, 51–56 (2005) MathSciNetCrossRefGoogle Scholar
  43. Scafetta, N., Willson, R.C.: Geophys. Res. Lett. 36, L05701 (2009) ADSCrossRefGoogle Scholar
  44. Scafetta, N.: J. Atmos. Sol.-Terr. Phys. 72, 951 (2010a) ADSCrossRefGoogle Scholar
  45. Scafetta, N.: Abstract GC21B-0868 Poster, Presented at 2010 Fall Meeting, AGU, San Francisco, Calif, 13–17 December 2010b Google Scholar
  46. Scafetta, N.: In: Easterbrook, D. (ed.) Evidence-Based Climate Science, vol. 12, p. 289. Elsevier, Amsterdam (2011) CrossRefGoogle Scholar
  47. Scafetta, N.: J. Atmos. Sol.-Terr. Phys. 74, 145 (2012a) ADSCrossRefGoogle Scholar
  48. Scafetta, N.: J. Atmos. Sol.-Terr. Phys. 80, 124 (2012b) ADSCrossRefGoogle Scholar
  49. Scafetta, N.: J. Atmos. Sol.-Terr. Phys. 80, 296 (2012c) ADSCrossRefGoogle Scholar
  50. Scafetta, N.: J. Atmos. Sol.-Terr. Phys. 81–82, 27 (2012d) CrossRefGoogle Scholar
  51. Scafetta, N., Willson, R.C.: Planet. Space Sci. 78, 38 (2013) ADSCrossRefGoogle Scholar
  52. Scafetta, N., Humlum, O., Solheim, J.-E., Stordahl, K.: J. Atmos. Sol.-Terr. Phys. (2013). doi:10.1016/j.jastp.2013.03.007 Google Scholar
  53. Scharf, C.A.: Astrophys. J. 722, 1547 (2010) ADSCrossRefGoogle Scholar
  54. Sharp, G.J.: Int. J. Astron. Astrophys. (2013, in press) Google Scholar
  55. Shkolnik, E., Walker, G.A.H., Bohlender, D.A.: Astrophys. J. 597, 1092 (2003) ADSCrossRefGoogle Scholar
  56. Shkolnik, E., Walker, G.A.H., Bohlender, D.A., Gu, P.-G., Kurster, M.: Astrophys. J. 622, 1075 (2005) ADSCrossRefGoogle Scholar
  57. Shravan, M.H., Thomas L.D. Jr., Katepalli, R.S.: Proc. Natl. Acad. Sci. USA 109, 11928 (2012) CrossRefGoogle Scholar
  58. Smythe, C.M., Eddy, J.A.: Nature 266, 434 (1977) ADSCrossRefGoogle Scholar
  59. Steinhilber, et al.: Proc. Natl. Acad. Sci. USA 109, 5967 (2012) ADSCrossRefGoogle Scholar
  60. Sturrock, P.A., Caldwell, D.O., Scargle, J.D.: Astropart. Phys. 26, 174 (2006) ADSCrossRefGoogle Scholar
  61. Tan, B.: Astrophys. Space Sci. 332, 65 (2011) ADSCrossRefGoogle Scholar
  62. Tan, B., Cheng, Z.: Astrophys. Space Sci. 343, 511 (2012) ADSCrossRefGoogle Scholar
  63. Tobias, S.M.: Philos. Trans. R. Soc. A 360, 2741 (2002) ADSCrossRefMATHGoogle Scholar
  64. Wang, Z., Wu, D., Song, X., Chen, X., Nicholls, S.: J. Geophys. Res. 117, D07102 (2012) ADSGoogle Scholar
  65. Willson, R.C., Gulkis, S., Janssen, M., Hudson, H.S., Chapman, G.A.: Science 211, 700 (1981) ADSCrossRefGoogle Scholar
  66. Willson, R.C., Hudson, H.S., Fröhlich, C., Brusa, R.W.: Science 234, 1114 (1986) ADSCrossRefGoogle Scholar
  67. Willson, R.C., Hudson, H.S.: Nature 351, 42 (1991) ADSCrossRefGoogle Scholar
  68. Willson, R.C.: Science 277, 1963 (1997) ADSCrossRefGoogle Scholar
  69. Willson, R.C., Mordvinov, A.V.: Geophys. Res. Lett. 30, 1199 (2003) ADSCrossRefGoogle Scholar
  70. Wilson, I.R.G., Carter, B.D., Waite, I.A.: Publ. Astron. Soc. Aust. 25, 85 (2008) ADSCrossRefGoogle Scholar
  71. Wolf, R.: Mon. Not. R. Astron. Soc. 19, 85 (1859) ADSGoogle Scholar
  72. Wolff, C.L., Patrone, P.N.: Sol. Phys. 266, 227 (2010) ADSCrossRefGoogle Scholar
  73. Wood, R.M., Wood, K.D.: Nature 208, 129 (1965) ADSCrossRefGoogle Scholar
  74. Wright, J.T., et al.: Astrophys. J. 683, L63 (2008) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Active Cavity Radiometer Irradiance Monitor (ACRIM)CoronadoUSA
  2. 2.Duke UniversityDurhamUSA

Personalised recommendations