Skip to main content
Log in

Effects in the anomalistic period of celestial bodies due to a logarithmic correction to the Newtonian gravitational potential

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We study the motion of a secondary celestial body under the influence of the logarithmic corrected gravitational force of a primary one. This kind of correction was introduced by Fabris and Campos (Gen. Relativ. Gravit. 41(1):93, 2009). We derive two equations to compute the rate of change of the anomalistic period with respect to the eccentric anomaly and its total variation over one revolution. In a kinematical sense, this influence produces an apsidal motion. We perform numerical estimations for some celestial bodies. We also compare our results to those obtained by considering a Yukawa correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adkins, G.S., McDonnell, J.: Orbital precession due to central-force perturbations. Phys. Rev. D 75(8), 082001 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  • Binney, J., Tremaine, S.: Galactic Dynamics. Princeton University Press, Princeton (1987)

    MATH  Google Scholar 

  • Brumberg, V.A.: Relativistic Celestial Mechanics. Nauka, Moscow (1972)

    MATH  Google Scholar 

  • Capozziello, S., Cardone, V.F., Lambiase, G., Troisi, A.: A fluid of strings as a viable candidate for the dark side of the universe. Int. J. Mod. Phys. D 15(1), 69 (2006)

    Article  ADS  MATH  Google Scholar 

  • Diacu, F.N.: On the validity of Mücket–Treder gravitational law. Report DMS-621-IR, University of Victoria (1992). http://dspace.library.uvic.ca:8080/handle/1828/2773

  • Esposito-Farèse, G.: Summary of session A4: alternative theories of gravity. Class. Quantum Gravity 25(11), 114017 (2008)

    Article  ADS  Google Scholar 

  • Fabris, J.C., Campos, J.P.: Spiral galaxies rotation curves with a logarithmic corrected Newtonian gravitational potential. Gen. Relativ. Gravit. 41(1), 93 (2009)

    Article  ADS  MATH  Google Scholar 

  • Haranas, I., Ragos, O.: Yukawa-type effects in satellite dynamics. Astrophys. Space Sci. 331, 115 (2011)

    Article  ADS  MATH  Google Scholar 

  • Haranas, I., Ragos, O., Mioc, V.: Yukawa-type potential effects in the anomalistic period of celestial bodies. Astrophys. Space Sci. 332, 107 (2011)

    Article  ADS  MATH  Google Scholar 

  • Iorio, L.: On the effects of Dvali Gabadadze Porrati braneworld gravity on the orbital motion of a test particle. Class. Quantum Gravity 22(24), 5271 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Iorio, L.: Astronomical constraints on some long-range models of modified gravity. Adv. High Energy Phys. 2007, 90731 (2007a)

    ADS  Google Scholar 

  • Iorio, L.: Constraints on the range λ of Yukawa-like modifications to the Newtonian inverse-square law of gravitation from solar system planetary motions. J. High Energy Phys. 10, 041 (2007b)

    Article  ADS  Google Scholar 

  • Iorio, L.: The post-Newtonian mean anomaly advance as further post-Keplerian parameter in pulsar binary systems. Astrophys. Space Sci. 312(3–4), 331 (2007c)

    Article  ADS  Google Scholar 

  • Iorio, L.: Putting Yukawa-like modified gravity (MOG) on the test in the solar system. Sch. Res. Exch. 2008, 238385 (2008)

    Google Scholar 

  • Iorio, L.: The recently determined anomalous perihelion precession of Saturn. Astron. J. 137(3), 3615 (2009)

    Article  ADS  Google Scholar 

  • Iorio, L.: On the anomalous secular increase of the eccentricity of the orbit of the Moon. Mon. Not. R. Astron. Soc. 415(2), 1266 (2011a)

    Article  ADS  Google Scholar 

  • Iorio, L.: Observational constraints on spatial anisotropy of G from orbital motions. Class. Quantum Gravity 28(22), 225027 (2011b)

    Article  MathSciNet  ADS  Google Scholar 

  • Iorio, L.: Dynamical orbital effects of general relativity on the satellite-to-satellite range and range-rate in the GRACE mission: a sensitivity analysis. Adv. Space Res. 50(3), 334 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  • Iorio, L., Ruggiero, M.L.: Solar system tests of some models of modified gravity proposed to explain galactic rotation curves without dark matter. Sch. Res. Exch. 2008, 968393 (2008)

    Google Scholar 

  • Iorio, L., Lichtenegger, H.I.M., Ruggiero, M.L., Corda, C.: Phenomenology of the Lense-Thirring effect in the solar system. Astrophys. Space Sci. 331(2), 351 (2011)

    Article  ADS  MATH  Google Scholar 

  • Kinney, W.H., Brisudova, M.: An attempt to do without dark matter. Ann. N.Y. Acad. Sci. 927, 127 (2001)

    Article  ADS  Google Scholar 

  • Kirillov, A.: The nature of dark matter. Phys. Lett. B 632(4), 453 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kokubun, F.: Restricted problem of three bodies with Newtonian + Yukawa potential. Int. J. Mod. Phys. D 13(05), 783 (2004)

    Article  ADS  Google Scholar 

  • Li, L.-S.: Post-Newtonian effect on the variation of time of periastron passage of binary stars in three gravitational theories. Astrophys. Space Sci. 327(1), 59 (2010)

    Article  ADS  MATH  Google Scholar 

  • Li, L.-S.: Influence of the gravitational radiation damping on the time of periastron passage of binary stars. Astrophys. Space Sci. 334(1), 125 (2011)

    Article  ADS  MATH  Google Scholar 

  • Mioc, V.: Symmetries of Mücket–Treder’s two-body problem. Hvar Obs. Bull. 28(1), 167 (2004)

    ADS  Google Scholar 

  • Mioc, V., Blaga, P.: Orbital motion with the Mücket-Treder post-Newtonian gravitational law. Rom. Astron. J. 1(1–2), 103 (1991)

    Google Scholar 

  • Mücket, J.P., Treder, H.J.: The perihelion advance according to a post-Newtonian gravitational law with logarithmic correction term. Astron. Nachr. 298, 65 (1977)

    Article  ADS  MATH  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Nobili, A.M., Will, C.M.: The real value of Mercury’s perihelion advance. Nature 320, 39 (1986)

    Article  ADS  Google Scholar 

  • Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4(1), 115 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Pitjeva, E.V.: High-precision ephemerides of planets-EPM and determination of some astronomical constants. Sol. Syst. Res. 39(3), 176 (2005)

    Article  ADS  Google Scholar 

  • Ruggiero, M.L.: Perturbations of Keplerian orbits in stationary spherically symmetric spacetimes (2010). arXiv:1010.2114

  • Schmidt, H.-J.: Perihelion precession for modified Newtonian gravity. Phys. Rev. D 78(2), 023512 (2008)

    Article  ADS  Google Scholar 

  • Shapiro, I.L., Solà, J., Štefančić, H.: Running G and Λ at low energies from physics at M X: possible cosmological and astrophysical implications. J. Cosmol. Astropart. Phys. 501, 012 (2005)

    Article  ADS  Google Scholar 

  • Soleng, H.H.: Dark matter and non-Newtonian gravity from general relativity coupled to a fluid of strings. Gen. Relativ. Gravit. 27(4), 367 (1995)

    Article  ADS  Google Scholar 

  • Van Moorsel, G.A.: Dark matter associated with binary galaxies. Astron. Astrophys. 176(1), 13 (1987)

    ADS  Google Scholar 

  • Xu, F.: Perihelion precession from power law central force and magnetic-like force. Phys. Rev. D 83(8), 084008 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewer for his valuable comments and suggestions that helped to improve this manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Haranas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragos, O., Haranas, I. & Gkigkitzis, I. Effects in the anomalistic period of celestial bodies due to a logarithmic correction to the Newtonian gravitational potential. Astrophys Space Sci 345, 67–72 (2013). https://doi.org/10.1007/s10509-013-1377-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-013-1377-6

Keywords

Navigation