Skip to main content
Log in

Nuclear criticality as a contributor to gamma ray burst events

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Most gamma ray bursts are able to be explained using supernovae related phenomenon. Some measured results still lack compelling explanations and a contributory cause from nuclear criticality is proposed. This is shown to have general properties consistent with various known gamma ray burst properties. The galactic origin of fast rise exponential decay gamma ray bursts is considered a strong candidate for these types of events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that prompt gamma photons are those emitted during the fission process, delayed emissions are those emitted from the decay of the fission products themselves.

References

  • ANS: Criticality Accident Alarm System. ANSI/ANS-8.3-1997 R2003. American Nuclear Society, Lagrange Park, IL (2003)

    Google Scholar 

  • Arnould, M., Goriely, S., Takahashi, K.: The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys. Rep. 450, 97–213 (2007)

    Article  ADS  Google Scholar 

  • Avignone, F.T. III, Braden, C.H., Patronis, E.T., Wyly, L.D.: Conversion-electron-gamma directional correlation in 13 Cs. Nucl. Phys. 80, 314–320 (1966)

    Article  Google Scholar 

  • Barbiellini, G., Longo, F.: Gamma-ray bursts and cosmology. Chin. J. Astron. Astrophys. 3, 449–454 (2003)

    Article  ADS  Google Scholar 

  • Clayton, D.D., Leising, M.D., The, L.-S., Johnson, W.N., Kurfess, JD.: The Co-57 abundance in SN 1987A. Astrophys. J. 399, L141–L144 (1992)

    Article  ADS  Google Scholar 

  • Cooper, R.L., Kaplan, D.L.: Magnetic field-decay-induced electron captures: a strong heat source in magnetar crusts. Astrophys. J. 708, L80–L83 (2010)

    Article  ADS  Google Scholar 

  • Cowan, G.A.: A Natural Fission Reactor. Scientific American 36–47, July 1976

  • Culp, A.W.: Principles of Energy Conversion. McGraw Hill, New York (1991)

    Google Scholar 

  • Dishoeck, E., Blake, G.A.: Chemical evolution of star-forming regions. Annu. Rev. Astron. Astrophys. 36, 317–368 (1998)

    Article  ADS  Google Scholar 

  • Domainko, W., Ruffert, M.: Long-term remnant evolution of compact binary mergers. Astron. Astrophys. 444, L33–L36 (2005)

    Article  ADS  Google Scholar 

  • Eliasi, H., Menhaj, M.B., Davilu, H.: Robust nonlinear model predictive control for nuclear power plants in load following operations with bounded xenon oscillations. Nucl. Eng. Des. 241, 533–543 (2011)

    Article  Google Scholar 

  • El-Wahab, W.A., El-Arabi, A., Sakka, M.: Analytic study of prompt and delayed gamma distributions. IEEE Trans. Nucl. Sci. 29, 132–135 (1982)

    Article  ADS  Google Scholar 

  • Fraser, J.S., Milton, J.C.D.: Nuclear fission. Annu. Rev. Nucl. Sci. 16, 379–444 (1966)

    Article  ADS  Google Scholar 

  • Fujii, Y., Iwamoto, A., Fukahori, T., Ohnuky, T., Nakagawa, M., Hidaka, H., Oura, Y., Möller, P.: The nuclear interaction at Oklo 2 billion years ago. Nucl. Phys. B 573, 377–401 (2000)

    Article  ADS  Google Scholar 

  • Ghisellini, G.: Gamma ray bursts: open problems (2003). arXiv:astro-ph/0301256v1

  • Gilmore, G., Wyse, R.F.G., Kuijken, K.: Kinematics, chemistry, and structure of the galaxy. Annu. Rev. Astron. Astrophys. 27, 555–627 (1989)

    Article  ADS  Google Scholar 

  • Goriely, S., Demetriou, P., Janka, H.-Th., Pearson, J.M., Samyn, M.: The r-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics. Nucl. Phys. A 758, 587c–594c (2005)

    Article  ADS  Google Scholar 

  • Gozani, T.: Fission signatures for nuclear material detection. IEEE Trans. Nucl. Sci. 56, 736–741 (2009)

    Article  ADS  Google Scholar 

  • Hayes, R.B.: Preliminary benchmarking efforts and MCNP simulation results for Homeland security. Nucl. Technol. 168, 852–857 (2009)

    Google Scholar 

  • Hoffman, D.C., Hoffman, M.M.: Post-fission phenomena. Annu. Rev. Nucl. Sci. 24, 151–208 (1974)

    Article  ADS  Google Scholar 

  • Hurley, K.: Soft gamma repeaters. Adv. Space Res. 47, 1326–1331 (2011)

    Article  ADS  Google Scholar 

  • Hurley, K.: Cosmic gamma-ray bursts, an overview of recent results. 14th Texas Symp. on Rel. Astrophys. Ann. N.Y. Acad. Sci. 571, 442–459 (1989)

    Article  ADS  Google Scholar 

  • Kandil, A.T., El-Mekkawi, L.S.: Fission fragment γ-ray anisotropies. Nucl. Phys. A 224, 468–476 (1974)

    Article  ADS  Google Scholar 

  • KAPL: Nuclides and Isotopes, Chart of the Nuclides, 17th edn. Knolls Atomic Power Laboratory, Niskayuna NY (2010)

    Google Scholar 

  • Kessler, G., Höbel, W., Goel, B., Seifritz, W.: Potential nuclear explosive yield of reactor-grade plutonium using the disassembly theory of early reactor safety analysis. Nucl. Eng. Des. 238, 3475–3499 (2008)

    Article  Google Scholar 

  • Koch, L.J., Paxton, H.C.: Fast reactors. Annu. Rev. Nucl. Sci. 9, 437–472 (1959)

    Article  ADS  Google Scholar 

  • Kouveliotou, C., Dieters, S., Strohmayer, T., Paradijs, J.V., Fishman, G.J., Meegan, C.A., Hurley, K., Kommers, J., Smith, I., Frail, D., Murakami, T.: An X-ray pulsar with a superstrong magnetic field in the soft g-ray repeater SGR1806-20. Nature 393, 235–237 (1998)

    Article  ADS  Google Scholar 

  • Knief, R.A.: Nuclear Criticality Safety, Theory and Practice. American Nuclear Society, La Grange Park (1985)

    Google Scholar 

  • Lamarsh, J.R.: Introduction to Nuclear Engineering, 2nd edn. Addison-Wesley, Reading (1983)

    Google Scholar 

  • Lamarsh, J.R.: Introduction to Nuclear Reactor Theory. American Nuclear Society, Lagrange Park (2002).

    Google Scholar 

  • Langanke, K.: Nuclear astrophysics. Nucl. Phys. A 654, 330c–349c (1999)

    Article  ADS  Google Scholar 

  • Leising, M.D.: X-ray astronomy of radioactivity in SN 1987A. New Astron. Rev. 50, 557–560 (2006)

    Article  ADS  Google Scholar 

  • Maienschein, F.C., Peelle, R.W., Zobel, W., Love, T.E.: Paper 670, gamma rays associated with fission. In: Proc. 2nd Int. Conf. on Peaceful Uses of Atomic Energy, Geneva (1958)

    Google Scholar 

  • Maier-Leibnitz, H., Springer, T.: Production and use of thermal reactor neutron beams. Annu. Rev. Nucl. Sci. 16, 207–262 (1966)

    Article  ADS  Google Scholar 

  • Martinez-Penedo, G., Modelj, D., Zinner, N.T., Kelić, A., Langanke, K., Panov, I., Pfeiffer, B., Rauscher, T., Schmidt, K.-H., Thielemann, F.-K.: The role of fission in the r-process. Review. Prog. Part. Nucl. Phys. 59, 199–205 (2007)

    Article  ADS  Google Scholar 

  • Mészáros, P.: Theories of gamma-ray bursts. Annu. Rev. Astron. Astrophys. 40, 137–169 (2002)

    Article  Google Scholar 

  • Müller, T.M., Dubbers, D., Hautle, P., Bunyatova, E.I., Korobkina, E.I., Zimmer, O.: Measurement of the γ-anisotropy of the \(\vec{n}+ \vec{p} \to d + \gamma\). Nucl. Instrum. Methods A 440, 736–743 (2000)

    Article  ADS  Google Scholar 

  • Norman, E.B., Prussin, S.G., Larimer, R.M., Shugart, H., Browne, E., Smith, A.R., McDonald, R.J., Nitche, H., Gupta, P., Frank, M.I., Gosnell, T.B.: Signatures of fissile materials: high-energy γ rays following fission. Nucl. Instrum. Methods A 521, 608–610 (2004)

    Article  ADS  Google Scholar 

  • Nomoto, K., Tominga, N., Umeda, H.: Nucleosynthesis yields of core-collapse supernovae and hypernovae and galactic chemical evolution. Nucl. Phys. A 777, 424–458 (2006)

    Article  ADS  Google Scholar 

  • Otsuki, K., Matthews, G.J., Kajino, T.: R-process abundance universality and actinide cosmochronology. New Astron. 8, 767–776 (2003)

    Article  ADS  Google Scholar 

  • Paradijs, J.V., Kouveliotou, C., Wijers, R.A.M.J.: Gamma-ray burst afterglows. Annu. Rev. Astron. Astrophys. 38, 379–425 (2000)

    Article  ADS  Google Scholar 

  • Qian, Y.Z.: The origin of the heavy elements: recent progress in the understanding of the r-process. Prog. Part. Nucl. Phys. 50, 153–199 (2003)

    Article  ADS  Google Scholar 

  • Reddingius, E.R., Potters, J.F.M., Postma, H.: A study of gamma-ray spectra of thermal neutron capture in 143Nd and 145Nd; including directional anisotropy and linear polarization measurements of such gamma rays from aligned 143 nuclei. Physica 38, 48–66 (1968)

    Article  ADS  Google Scholar 

  • Reddingius, E.R., Postma, H.: Directional anisotropy of capture gamma rays from aligned 149Sm nuclei. Nucl. Phys. A 137, 389–416 (1969)

    Article  ADS  Google Scholar 

  • Roberts, D., Dabbs, J.W.T.: Nuclear orientation. Annu. Rev. Nucl. Sci. 11, 175–212 (1961)

    Article  ADS  Google Scholar 

  • Rudstam, G., Johansson, P.I., Tengblad, O., Eriksen, J.A.P.: Beta and gamma spectra of short-lived fission products. At. Data Nucl. Data Tables 45, 239–320 (1990)

    Article  ADS  Google Scholar 

  • Shultis, J.K., Faw, R.E.: Radiation Shielding. American Nuclear Society, Lagrange Park (2000)

    Google Scholar 

  • Sneden, C., Cowan, J.J., Lawler, J.E., Ivans, I.I., Burles, S., Beers, T.C., Primas, F., Hill, V., Truran, J.W., Fuller, G.M., Pfeiffer, B., Kratz, K.L.: The extremely metal-poor, neutron capture-rich star CS 22892-052: a comprehensive abundance analysis. Astrophys. J. 591, 936–953 (2003)

    Article  ADS  Google Scholar 

  • Sood, A., Forster, R., Arthur, K., Parsons, D.: Analytical benchmark test set for criticality code verification. Prog. Nucl. Energy 42, 55–106 (2003)

    Article  Google Scholar 

  • Stevenson, D.T., Deutsch, M.: Electron-gamma-angular correlation measurements in radioactive decay. Phys. Rev. 83, 1202–1207 (1951)

    Article  ADS  Google Scholar 

  • Tello, J.C., Tirado, A.J.C., Gorosabel, J., Ramirez, D.P., Guziy, S., Ramirez, R.S., Jelinek, M., Veres, P., Bagoly, Z.: Searching for galactic sources in the Swift GRB catalog statistical analyses of the angular distributions of FREDs. Astron. Astrophys. 548, L7 (2012)

    Article  ADS  Google Scholar 

  • Tobias, A.: Decay heat. Prog. Nucl. Energy 5, 1–93 (1980)

    Article  Google Scholar 

  • Valentine, T.E.: Evaluation of prompt fission gamma rays for use in simulating nuclear safeguard measurements. Ann. Nucl. Energy 28, 191–201 (2001)

    Article  Google Scholar 

  • Wasserburg, G.J., Busso, M., Gallino, R., Nollett, K.M.: Short-lived nuclei in the early Solar System: possible AGB sources. Nucl. Phys. A 777, 5–69 (2006)

    Article  ADS  Google Scholar 

  • Waxman, E.: Gamma-ray bursts: the underlying model. Lect. Notes Phys. 598, 393 (2003). arXiv:astro-ph/0303517v1

    Article  ADS  Google Scholar 

  • Woolsey, S.E., Bloom, J.S.: The supernova-gamma-ray burst connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006)

    Article  ADS  Google Scholar 

  • Wu, C.S., Ambler, E., Hayward, R.W., Hoppes, D.D., Hudson, R.P.: An experimental test of parity conservation in beta decay. Phys. Rev. 105, 1413–1415 (1957)

    Article  ADS  Google Scholar 

  • Zhang, B.: Gamma-ray burst afterglows. Adv. Space Res. 40, 1186–1198 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Special thanks are extended to Dr Peter Fisher of the MIT physics department’s laboratory for nuclear science for useful discussion and encouragement in consideration of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Hayes.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 44 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, R.B. Nuclear criticality as a contributor to gamma ray burst events. Astrophys Space Sci 345, 147–154 (2013). https://doi.org/10.1007/s10509-013-1371-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-013-1371-z

Keywords

Navigation