Astrophysics and Space Science

, Volume 343, Issue 1, pp 221–227

Time dependent cylindrical and spherical DIA solitary waves with two populations of thermal electrons in dusty plasma

Original Article

Abstract

The propagation of Gardner solitons (GSs) in a nonplanar (cylindrical and spherical) geometry associated with a dusty plasma whose constituents are non-inertial negative static dust, inertial ions, and two population of Boltzmann electrons with two distinctive temperatures, are investigated by deriving the modified Gardner (mG) equation using the reductive perturbation method. The basic features of nonplanar dust-ion-acoustic GSs are analyzed by numerical solutions of mG equation. It has been found that the basic characteristics of GSs, which are shown to exist for the values of μc=ne10/ni0 around 0.319 for ne20/ni0=0.04 and Te1/Te2=0.2 [where ne10 (ne20) is the cold (hot) electron number density at equilibrium, Te1 (Te2) is the temperature of the cold (hot) electron species] are different from those of K-dV (Korteweg-de Vries) solitons, which do not exist around μc≃0.319. The implications of our results in understanding the nonlinear electrostatic perturbations observed in many laboratory and astrophysical situations (viz. double-plasma machines, rf discharge plasma, noctilucent cloud region in Earth’s atmosphere, source regions of Auroral Kilometric Radiation, Saturn’s E-ring, etc.) where electrons with different temperatures can significantly modify the wave dynamics, are also briefly discussed.

Keywords

Dust-ion-acoustic waves Two-electron-temperature Modified Gardner equation Modified Gardner solitons Reductive perturbation method 

References

  1. Alinejad, H.: Astrophys. Space Sci. 327, 131 (2010) ADSMATHCrossRefGoogle Scholar
  2. Alinejad, H.: Astrophys. Space Sci. 334, 331 (2011a) ADSMATHCrossRefGoogle Scholar
  3. Alinejad, H.: Astrophys. Space Sci. 334, 325 (2011b) ADSMATHCrossRefGoogle Scholar
  4. Asaduzzaman, M., Mamun, A.A.: Astrophys. Space Sci. (2012a). doi: 10.1007/s10509-012-1102-x Google Scholar
  5. Asaduzzaman, M., Mamun, A.A.: J. Plasma Phys. 78, 125 (2012b) ADSCrossRefGoogle Scholar
  6. Barkan, A., D’Angelo, N., Merlino, R.L.: Planet. Space Sci. 44, 239 (1996) ADSCrossRefGoogle Scholar
  7. Chatterjee, P., Roychoudhury, R.: Can. J. Phys. 75, 337 (1997) ADSCrossRefGoogle Scholar
  8. D’Angelo, N.: J. Phys. D 28, 1009 (1995) ADSCrossRefGoogle Scholar
  9. Das, G.C., Tagare, S.G.: Plasma Phys. 17, 1025 (1975) ADSCrossRefGoogle Scholar
  10. Dubouloz, N., et al.: Geophys. Res. Lett. 98, 17415 (1993) Google Scholar
  11. El-Labany, S.K., Moslem, W.M., El-Bedwehy, N.A., Abd El-Razek, H.N.: Astrophys. Space Sci. 337, 231 (2012) ADSMATHCrossRefGoogle Scholar
  12. Ergun, R.E., et al.: Geophys. Res. Lett. 25, 2061 (1998) ADSCrossRefGoogle Scholar
  13. Estabrook, K., Krueer, W.I.: Phys. Rev. Lett. 40, 42 (1978) ADSCrossRefGoogle Scholar
  14. Geiss, J., et al.: Space Sci. Rev. 22, 537 (1978) ADSCrossRefGoogle Scholar
  15. Ghosh, K.K., et al.: J. Phys. A, Math. Theor. 41, 335501 (2008) CrossRefGoogle Scholar
  16. Goertz, C.K.: Rev. Geophys. 27, 271 (1989) ADSCrossRefGoogle Scholar
  17. Hossain, M.M., Mamun, A.A., Ashrafi, K.S.: Phys. Plasmas 18, 103704 (2011) ADSCrossRefGoogle Scholar
  18. Jones, W.D., et al.: Phys. Rev. Lett. 35, 1349 (1975) ADSCrossRefGoogle Scholar
  19. Kundu, N.R., Masud, M.M., Ashrafi, K.S., Mamun, A.A.: Astrophys. Space Sci. (2012). doi:10.1007/s10509-012-1223-2 Google Scholar
  20. Lakhina, G.S., et al.: Phys. Plasmas 15, 062931 (2008) CrossRefGoogle Scholar
  21. Lonngren, K.E.: Plasma Phys. 25, 943 (1983) ADSCrossRefGoogle Scholar
  22. Mamun, A.A.: Phys. Lett. A 372, 1490 (2007) ADSCrossRefGoogle Scholar
  23. Mamun, A.A., Jahan, N., Shukla, P.K.: J. Plasma Phys. 75, 413 (2009) ADSCrossRefGoogle Scholar
  24. Mannan, A., Mamun, A.A.: Phys. Rev. E 84, 026408 (2011) ADSCrossRefGoogle Scholar
  25. Masud, M.M., Asaduzzaman, M., Mamun, A.A.: Phys. Plasmas (2012). doi:10.1063/1.4753922 MATHGoogle Scholar
  26. Morals, G.J., Lee, Y.C.: Phys. Rev. Lett. 33, 1534 (1974) ADSCrossRefGoogle Scholar
  27. Moslem, W.M., El-Taibany, W.F.: Phys. Plasmas 12, 122309 (2005) ADSCrossRefGoogle Scholar
  28. Moslem, W.M., et al.: Phys. Plasmas 12, 052318 (2005) ADSCrossRefGoogle Scholar
  29. Nakamura, Y., Bailung, H., Shukla, P.K.: Phys. Rev. Lett. 83, 1602 (1999) ADSCrossRefGoogle Scholar
  30. Nishida, Y., Nagasawa, T.: Phys. Fluids 29, 345 (1986) ADSCrossRefGoogle Scholar
  31. Oleson, N.L., Found, F.G.: J. Appl. Phys. 29, 416 (1946) Google Scholar
  32. Rahman, O., Mamun, A.A.: Phys. Plasmas 18, 083703 (2011) ADSCrossRefGoogle Scholar
  33. Rahman, O., Mamun, A.A., Ashrafi, K.S.: Astrophys. Space Sci. 335, 425 (2011) ADSMATHCrossRefGoogle Scholar
  34. Shah, A., Haque, Q., Mahmood, S.: Phys. Plasmas 16, 123704 (2009) ADSCrossRefGoogle Scholar
  35. Shalaby, M., et al.: Chaos Solitons Fractals 41, 1208 (2009) ADSCrossRefGoogle Scholar
  36. Shukla, P.K., Silin, V.P.: Phys. Scr. 45, 508 (1992) ADSCrossRefGoogle Scholar
  37. Spileman, R.B., et al.: J. Plasma Phys. 47, 1909 (1976) Google Scholar
  38. Tagare, S.G.: Phys. Plasmas 4, 3167 (1997) ADSCrossRefGoogle Scholar
  39. Xie, B., He, K., Huang, Z.: Phys. Plasmas 6, 3808 (1999) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of PhysicsJahangirnagar UniversityDhakaBangladesh

Personalised recommendations