Astrophysics and Space Science

, Volume 342, Issue 2, pp 575–578 | Cite as

Testing quantised inertia on galactic scales

  • M. E. McCullochEmail author
Original Article


Galaxies and galaxy clusters have rotational velocities (v) apparently too fast to allow them to be gravitationally bound by their visible matter (M). This has been attributed to the presence of invisible (dark) matter, but so far this has not been directly detected. Here, it is shown that a new model that modifies inertial mass by assuming it is caused by Unruh radiation, which is subject to a Hubble-scale (Θ) Casimir effect predicts the rotational velocity to be: v 4=2GMc 2/Θ (the Tully-Fisher relation) where G is the gravitational constant, M is the baryonic mass and c is the speed of light. The model predicts the outer rotational velocity of dwarf and disk galaxies, and galaxy clusters, within error bars, without dark matter or adjustable parameters, and makes a prediction that local accelerations should remain above 2c 2/Θ at a galaxy’s edge.


Galaxy rotation Inertial mass 



Thanks to S. McGaugh, K. Rosser and an anonymous reviewer for advice, and B. Kim for encouragement.


  1. Aguirre, A., Schaye, J., Quataert, E.: Problems for MoND in clusters and the LYα forest? Astrophys. J. 561, 550 (2001) ADSCrossRefGoogle Scholar
  2. Ahmed, Z., et al. (CDMS Collaboration): Phys. Rev. Lett. 102, 011301 Google Scholar
  3. Freedman, W.L.: Final results of the Hubble space telescope key project to measure the Hubble constant. Astrophys. J. 553, 47–72 (2001) ADSCrossRefGoogle Scholar
  4. Haisch, B., Rueda, A., Puthoff, H.E.: Inertia as a zero-point-field Lorentz force. Phys. Rev. A 49, 678–694 (1994) ADSCrossRefGoogle Scholar
  5. McCulloch, M.E.: Modelling the pioneer anomaly as modified inertia. Mon. Not. R. Astron. Soc. 376, 338–342 (2007) ADSCrossRefGoogle Scholar
  6. McCulloch, M.E.: Modelling the flyby anomalies using a modification of inertia. Mon. Not. R. Astron. Soc. Lett. 389(1), L57–60 (2008) ADSCrossRefGoogle Scholar
  7. McCulloch, M.E.: Minimum accelerations from quantised inertia. Europhys. Lett. 90, 29001 (2010) ADSCrossRefGoogle Scholar
  8. McCulloch, M.E.: The Tajmar effect from quantised inertia. Europhys. Lett. 95, 39002 (2011) ADSCrossRefGoogle Scholar
  9. McGaugh, S.S., Schombert, J.M., e Blok, W.J.G., Zagursky, M.J.: Astrophys. J. 708, L14 (2009) ADSCrossRefGoogle Scholar
  10. Milgrom, M.: A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365 (1983) ADSCrossRefGoogle Scholar
  11. Milgrom, M.: Ann. Phys. 229, 384 (1994) ADSCrossRefGoogle Scholar
  12. Rubin, V., Thonnard, N., Ford, W.K. Jr: Rotational properties of 21 SC galaxies with a large ange of luminosities and radii from NGC 4605 (R=4 kpc) to UGC 2885 (R=122 kpc). Astrophys. J. 238, 471 (1980) ADSCrossRefGoogle Scholar
  13. Sanders, R.H.: Clusters of galaxies with modified Newtonian dynamics (MoND). Mon. Not. R. Astron. Soc. 342(3), 901–908 (2002) ADSCrossRefGoogle Scholar
  14. Tully, R.B., Fisher, J.R.: A new method of determining distances to galaxies. Astron. Astrophys. 54(3), 661–673 (1977) ADSGoogle Scholar
  15. XENON10 Collaboration: Phys. Rev. D 80, 115005 Google Scholar
  16. Zwicky, F.: Der Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110 (1933) ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.SMSEPlymouth UniversityPlymouthUK

Personalised recommendations