Two-stream approximation for rapid modeling the light pollution levels in local atmosphere

Abstract

The two-stream concept is used for modeling the radiative transfer in Earth’s atmosphere illuminated by ground-based light sources. The light pollution levels (illuminance and irradiance) are computed for various aerosol microphysical parameters, specifically the asymmetry parameter g A , single scattering albedo ω A , and optical thickness τ A . Two distinct size distributions of Junge’s and gamma-type are employed. Rather then being a monotonic function of τ A , the diffuse illuminance/irradiance shows a local minimum at specific τ A,lim independent of size distribution taken into consideration. The existence of local minima has relation to the scattering and attenuation efficiencies both of which have opposite effects. The computational scheme introduced in this paper is advantageous especially if the entire set of calculations needs to be repeated with an aim to simulate diffuse light in various situations and when altering optical states of the atmospheric environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aubé, M., Kocifaj, M.: Mon. Not. R. Astron. Soc. (2012, in press)

  2. Aubé, M., Franchomme-Fossé, L., Robert-Staehler, P., Houle, V.: Light pollution modeling and detection in a heterogeneous environment: toward a night time aerosol optical depth retrieval method. Proc. SPIE 2005, 5890 (2005)

    ADS  Google Scholar 

  3. Bohren, C.F., Clothiaux, E.E.: Fundamentals of Atmospheric Radiation. Wiley-VCH, Weinheim (2006)

    Book  Google Scholar 

  4. Bukowiecki, N., Kittelson, D.B., Watts, W.F., Burtscher, H., Weingartner, E., Baltensperger, U.: J. Aerosol Sci. 33, 1139 (2002)

    Article  Google Scholar 

  5. Buseck, P.R., Pósfai, M.: Proc. Natl. Acad. Sci. USA 96, 3372 (1999)

    ADS  Article  Google Scholar 

  6. Cinzano, P.: Mem. Soc. Astron. Ital. Suppl. 71, 239 (2000)

    ADS  Google Scholar 

  7. Cinzano, P., Falchi, F.: Mon. Not. R. Astron. Soc. (2012, in press)

  8. Greenwald, T.J., Stephens, G.L.: Application of a doubling-adding radiation model to visibility problems. Final report, CIRA, Colorado State University, Foothills Campus, Fort Collins Colorado 80523 (1988)

  9. Gushchin, G.P.: The Methods, Instrumentation and Results of Atmospheric Spectral Measurements. Gidrometeoizdat, Leningrad (1988)

    Google Scholar 

  10. Guyon, P., Boucher, O., Graham, B., Beck, J., Mayol-Bracero, O.L., Roberts, G.C., Maenhaut, W., Artaxo, P., Andreae, M.O.: J. Aerosol Sci. 34, 883 (2003)

    Article  Google Scholar 

  11. Horvath, H., Kasahara, M., Pesava, P.: J. Aerosol Sci. 27, 417 (1996)

    Article  Google Scholar 

  12. Horvath, H., Alados Arboledas, L., Olmo, F.J., Jovanović, O., Gangl, M., Kaller, W., Sánchez, C., Sauerzopf, H., Seidl, S.: J. Geophys. Res. 107, 4386 (2002)

    Article  Google Scholar 

  13. ILV: International Lighting Vocabulary, CIE No. 17.4 (1987)

  14. Jiménez-Aquino, J.I., Varela, J.R.: Rev. Mex. Fis. 51, 82 (2005)

    Google Scholar 

  15. Joseph, J.H., Kaufman, Y.J., Mekler, Y.: Appl. Opt. 30, 3047 (2001)

    ADS  Article  Google Scholar 

  16. Kerola, D.X.: Mon. Not. R. Astron. Soc. 365, 1295 (2006)

    ADS  Article  Google Scholar 

  17. Kocifaj, M., Horvath, H., Hrvol̆, J.: Atmos. Environ. 40, 1935 (2006)

    Article  Google Scholar 

  18. Lacis, A.A., Mishchenko, M.I.: Climate forcing, climate sensitivity, and climate response: A radiative modeling perspective on atmospheric aerosols. In: Charlson, R.L., Heintzenberg, J. (eds.) Aerosol Forcing of Climate. Wiley, New York (1994)

    Google Scholar 

  19. Lagrosas, N., Yoshii, Y., Kuze, H., Takeuchi, N., Naito, S., Sone, A., Kan, H.: Atmos. Environ. 38, 3885 (2004)

    Article  Google Scholar 

  20. Lata, K.M., Badarinath, K.V.S., Rao, T.V.R., Reddy, R.R., Ahammed, Y.N., Gopal, K.R., Azeem, P.A.: J. Quant. Spectrosc. Radiat. Transf. 78, 257 (2003)

    ADS  Article  Google Scholar 

  21. Lenoble, J.: Atmospheric Radiative Transfer. A. Deepak Publ., Hampton (1993)

    Google Scholar 

  22. Luginbuhl, C.B., Lockwood, G.W., Davis, D.R., Pick, K., Selders, J.: Publ. Astron. Soc. Pac. 121, 185 (2009)

    ADS  Article  Google Scholar 

  23. Lyamani, H., Olmo, F.J., Alcántra, A., Alados-Arboledas, L.: Atmos. Environ. 40, 6453 (2006)

    Article  Google Scholar 

  24. Markel, V.A., Shalaev, V.M.: J. Quant. Spectrosc. Radiat. Transf. 63, 321 (1999)

    ADS  Article  Google Scholar 

  25. Min, Q., Duan, M.: J. Quant. Spectrosc. Radiat. Transf. 87, 243 (2004)

    ADS  Article  Google Scholar 

  26. Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  27. Pesava, P., Horvath, H., Kasahara, M.: J. Aerosol Sci. 32, 1249 (2001)

    Article  Google Scholar 

  28. Ramachandran, S., Jayaraman, A.: Atmos. Environ. 37 1941 (2003)

    Article  Google Scholar 

  29. Shaiganfar, R., Beirle, S., Sharma, M., Chauhan, A., Singh, R.P., Wagner, T.: Atmos. Chem. Phys. 11, 10871 (2011)

    ADS  Article  Google Scholar 

  30. Shettle, E.P., Weinman, J.A.: J. Atmos. Sci. 27, 1048 (1970)

    ADS  Article  Google Scholar 

  31. Tuch, Th., Brand, P., Wichmann, H.E., Heyder, J.: Atmos. Environ. 31, 4193 (1997)

    Article  Google Scholar 

  32. Volten, H., Muñoz, O., Rol, E., de Haan, J.F., Vassen, W., Hovenier, J.W.: J. Geophys. Res. 106, 17375 (2001)

    ADS  Article  Google Scholar 

  33. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York (1982)

    Google Scholar 

  34. Zuev, V.E., Krekov, G.M.: Optical Models of the Atmosphere. Gidrometeoizdat, Leningrad (1986)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Scientific Grant Agency VEGA (grant No. 2/0002/12).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miroslav Kocifaj.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kocifaj, M. Two-stream approximation for rapid modeling the light pollution levels in local atmosphere. Astrophys Space Sci 341, 301–307 (2012). https://doi.org/10.1007/s10509-012-1074-x

Download citation

Keywords

  • Light pollution
  • Atmospheric effects
  • Methods: numerical
  • Radiative transfer
  • Scattering