Skip to main content
Log in

Two-stream approximation for rapid modeling the light pollution levels in local atmosphere

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The two-stream concept is used for modeling the radiative transfer in Earth’s atmosphere illuminated by ground-based light sources. The light pollution levels (illuminance and irradiance) are computed for various aerosol microphysical parameters, specifically the asymmetry parameter g A , single scattering albedo ω A , and optical thickness τ A . Two distinct size distributions of Junge’s and gamma-type are employed. Rather then being a monotonic function of τ A , the diffuse illuminance/irradiance shows a local minimum at specific τ A,lim independent of size distribution taken into consideration. The existence of local minima has relation to the scattering and attenuation efficiencies both of which have opposite effects. The computational scheme introduced in this paper is advantageous especially if the entire set of calculations needs to be repeated with an aim to simulate diffuse light in various situations and when altering optical states of the atmospheric environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aubé, M., Kocifaj, M.: Mon. Not. R. Astron. Soc. (2012, in press)

  • Aubé, M., Franchomme-Fossé, L., Robert-Staehler, P., Houle, V.: Light pollution modeling and detection in a heterogeneous environment: toward a night time aerosol optical depth retrieval method. Proc. SPIE 2005, 5890 (2005)

    ADS  Google Scholar 

  • Bohren, C.F., Clothiaux, E.E.: Fundamentals of Atmospheric Radiation. Wiley-VCH, Weinheim (2006)

    Book  Google Scholar 

  • Bukowiecki, N., Kittelson, D.B., Watts, W.F., Burtscher, H., Weingartner, E., Baltensperger, U.: J. Aerosol Sci. 33, 1139 (2002)

    Article  Google Scholar 

  • Buseck, P.R., Pósfai, M.: Proc. Natl. Acad. Sci. USA 96, 3372 (1999)

    Article  ADS  Google Scholar 

  • Cinzano, P.: Mem. Soc. Astron. Ital. Suppl. 71, 239 (2000)

    ADS  Google Scholar 

  • Cinzano, P., Falchi, F.: Mon. Not. R. Astron. Soc. (2012, in press)

  • Greenwald, T.J., Stephens, G.L.: Application of a doubling-adding radiation model to visibility problems. Final report, CIRA, Colorado State University, Foothills Campus, Fort Collins Colorado 80523 (1988)

  • Gushchin, G.P.: The Methods, Instrumentation and Results of Atmospheric Spectral Measurements. Gidrometeoizdat, Leningrad (1988)

    Google Scholar 

  • Guyon, P., Boucher, O., Graham, B., Beck, J., Mayol-Bracero, O.L., Roberts, G.C., Maenhaut, W., Artaxo, P., Andreae, M.O.: J. Aerosol Sci. 34, 883 (2003)

    Article  Google Scholar 

  • Horvath, H., Kasahara, M., Pesava, P.: J. Aerosol Sci. 27, 417 (1996)

    Article  Google Scholar 

  • Horvath, H., Alados Arboledas, L., Olmo, F.J., Jovanović, O., Gangl, M., Kaller, W., Sánchez, C., Sauerzopf, H., Seidl, S.: J. Geophys. Res. 107, 4386 (2002)

    Article  Google Scholar 

  • ILV: International Lighting Vocabulary, CIE No. 17.4 (1987)

  • Jiménez-Aquino, J.I., Varela, J.R.: Rev. Mex. Fis. 51, 82 (2005)

    Google Scholar 

  • Joseph, J.H., Kaufman, Y.J., Mekler, Y.: Appl. Opt. 30, 3047 (2001)

    Article  ADS  Google Scholar 

  • Kerola, D.X.: Mon. Not. R. Astron. Soc. 365, 1295 (2006)

    Article  ADS  Google Scholar 

  • Kocifaj, M., Horvath, H., Hrvol̆, J.: Atmos. Environ. 40, 1935 (2006)

    Article  Google Scholar 

  • Lacis, A.A., Mishchenko, M.I.: Climate forcing, climate sensitivity, and climate response: A radiative modeling perspective on atmospheric aerosols. In: Charlson, R.L., Heintzenberg, J. (eds.) Aerosol Forcing of Climate. Wiley, New York (1994)

    Google Scholar 

  • Lagrosas, N., Yoshii, Y., Kuze, H., Takeuchi, N., Naito, S., Sone, A., Kan, H.: Atmos. Environ. 38, 3885 (2004)

    Article  Google Scholar 

  • Lata, K.M., Badarinath, K.V.S., Rao, T.V.R., Reddy, R.R., Ahammed, Y.N., Gopal, K.R., Azeem, P.A.: J. Quant. Spectrosc. Radiat. Transf. 78, 257 (2003)

    Article  ADS  Google Scholar 

  • Lenoble, J.: Atmospheric Radiative Transfer. A. Deepak Publ., Hampton (1993)

    Google Scholar 

  • Luginbuhl, C.B., Lockwood, G.W., Davis, D.R., Pick, K., Selders, J.: Publ. Astron. Soc. Pac. 121, 185 (2009)

    Article  ADS  Google Scholar 

  • Lyamani, H., Olmo, F.J., Alcántra, A., Alados-Arboledas, L.: Atmos. Environ. 40, 6453 (2006)

    Article  Google Scholar 

  • Markel, V.A., Shalaev, V.M.: J. Quant. Spectrosc. Radiat. Transf. 63, 321 (1999)

    Article  ADS  Google Scholar 

  • Min, Q., Duan, M.: J. Quant. Spectrosc. Radiat. Transf. 87, 243 (2004)

    Article  ADS  Google Scholar 

  • Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Scattering, Absorption, and Emission of Light by Small Particles. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  • Pesava, P., Horvath, H., Kasahara, M.: J. Aerosol Sci. 32, 1249 (2001)

    Article  Google Scholar 

  • Ramachandran, S., Jayaraman, A.: Atmos. Environ. 37 1941 (2003)

    Article  Google Scholar 

  • Shaiganfar, R., Beirle, S., Sharma, M., Chauhan, A., Singh, R.P., Wagner, T.: Atmos. Chem. Phys. 11, 10871 (2011)

    Article  ADS  Google Scholar 

  • Shettle, E.P., Weinman, J.A.: J. Atmos. Sci. 27, 1048 (1970)

    Article  ADS  Google Scholar 

  • Tuch, Th., Brand, P., Wichmann, H.E., Heyder, J.: Atmos. Environ. 31, 4193 (1997)

    Article  Google Scholar 

  • Volten, H., Muñoz, O., Rol, E., de Haan, J.F., Vassen, W., Hovenier, J.W.: J. Geophys. Res. 106, 17375 (2001)

    Article  ADS  Google Scholar 

  • Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods, Quantitative Data and Formulae. Wiley, New York (1982)

    Google Scholar 

  • Zuev, V.E., Krekov, G.M.: Optical Models of the Atmosphere. Gidrometeoizdat, Leningrad (1986)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Scientific Grant Agency VEGA (grant No. 2/0002/12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Kocifaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocifaj, M. Two-stream approximation for rapid modeling the light pollution levels in local atmosphere. Astrophys Space Sci 341, 301–307 (2012). https://doi.org/10.1007/s10509-012-1074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-012-1074-x

Keywords

Navigation