Abstract
In this paper, we present G′/G-expansion method, exp-function method, modified F-expansion method as well as the traveling wave hypothesis for finding the exact traveling wave solutions of the quantum Zakharov-Kuznetsov equation which arises in quantum magneto-plasmas. By these methods, rich families of exact solutions have been obtained, including soliton solutions. This work continues to reinforce the idea that the proposed methods, with the help of symbolic computation, provide a powerful mathematical tool for solving nonlinear partial differential equations.
Similar content being viewed by others
References
Abdou, M.A.: Quantum Zakharov-Kuznetsov equation by the homotopy analysis method and Hirota’s bilinear method. Nonlinear Sci. Lett. B 1(3), 99–110 (2011)
Aslan, I.: Rational and multi-wave solutions to nonlinear evolution equations by means of the exp-function method. Sci. Bull. - “Politeh.” Univ. Buchar., Ser. A 74(1), 25–34 (2012)
Garcia, L.G., Haas, F., de Oliveira, L.P.L., Goedert, J.: Modified Zakharov equations for plasmas with quantum correction. Phys. Plasmas 12(1), 012302 (2005)
Ghosh, S., Bharutram, R.: Ion acoustic solitons and double layers in electron-positron-ion plasmas with dust particulates. Astrophys. Space Sci. 314(1–3), 121–127 (2010)
Keane, A.J., Mushtaq, A., Wheatland, M.S.: Alfven solitons in a Fermionic quantum plasma. Phys. Rev. E 83(6), 066407 (2011)
Marklund, M.: Classical and quantum kinetics of the Zakharov system. Phys. Plasmas 12(8), 082110 (2005)
Masood, W., Rizvi, H., Siddiq, M.: Obliquely propagating nonlinear structures in dissipative electron positron ion magnetoplasmas. Astrophys. Space Sci. (2012). doi:10.1007/s10509-010-0555-z
Mehdipoor, M.: The characteristics of ion-acoustic shock waves in non-Maxwellian plasmas with G′/G-expansion method. Astrophys. Space Sci. 338(1), 73–79 (2012)
Misra, A.P., Shukla, P.K.: Pattern dynamics and spatiotemporal chaos in the quantum Zakharov equations. Phys. Rev. E 79(5), 056401 (2007)
Moslem, W.M., Ali, S., Shukla, P.K., Tang, X.Y., Rowlands, G.: Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 1–5 (2007)
Pakzad, H.R.: Soliton energy of the Kadomtsev-Petviashvili equation in warm dusty plasma with variable dust charge, two temperature ions, and nonthermal electrons. Astrophys. Space Sci. 326(1), 69–75 (2010)
Tang, X.-Y., Shukla, P.K.: Lie symmetry analysis of the quantum Zakharov equations. Phys. Scr. 76(6), 665–668 (2007)
Wazwaz, A.-M.: Solitary waves solutions for extended forms of quantum Zakharov-Kuznetsov equations. Phys. Scr. 85, 025006 (2012)
Yan, Z.: Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharov-Kuznetsov equation in dense quantum plasmas. Phys. Lett. A 373, 2432–2437 (2009)
Zhang, B.-G., Liu, Z.-R., Xiao, Q.: New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation. Appl. Math. Comput. 217, 392–402 (2010)
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Relations between values of A, B, C and corresponding F(ξ) in Riccati equation:
A | B | C | F |
---|---|---|---|
0 | 1 | −1 | \(\frac{1}{2}+\frac{1}{2}\tanh(\frac{1}{2}\xi)\) |
0 | −1 | 1 | \(\frac{1}{2}-\frac{1}{2}\mathop{\mathrm{coth}}(\frac{1}{2}\xi)\) |
\(\frac{1}{2}\) | 0 | \(-\frac{1}{2}\) | coth(ξ)± csch(ξ), tanh(ξ)±i sech(ξ) |
1 | 0 | −1 | tanh(ξ), coth(ξ) |
\(\frac{1}{2}\) | 0 | \(\frac{1}{2}\) | sec(ξ)+tan(ξ), csc(ξ)−cot(ξ) |
\(-\frac{1}{2}\) | 0 | -\(\frac{1}{2}\) | sec(ξ)−tan(ξ), csc(ξ)+cot(ξ) |
1(−1) | 0 | 1(−1) | tanξcotξ |
0 | 0 | ≠0 | \(-\frac{1}{C\xi+\lambda}\) (λ is an arbitrary constant) |
Rights and permissions
About this article
Cite this article
Ebadi, G., Mojaver, A., Milovic, D. et al. Solitons and other solutions to the quantum Zakharov-Kuznetsov equation. Astrophys Space Sci 341, 507–513 (2012). https://doi.org/10.1007/s10509-012-1072-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10509-012-1072-z