Skip to main content
Log in

Solitons and other solutions to the quantum Zakharov-Kuznetsov equation

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this paper, we present G′/G-expansion method, exp-function method, modified F-expansion method as well as the traveling wave hypothesis for finding the exact traveling wave solutions of the quantum Zakharov-Kuznetsov equation which arises in quantum magneto-plasmas. By these methods, rich families of exact solutions have been obtained, including soliton solutions. This work continues to reinforce the idea that the proposed methods, with the help of symbolic computation, provide a powerful mathematical tool for solving nonlinear partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdou, M.A.: Quantum Zakharov-Kuznetsov equation by the homotopy analysis method and Hirota’s bilinear method. Nonlinear Sci. Lett. B 1(3), 99–110 (2011)

    Google Scholar 

  • Aslan, I.: Rational and multi-wave solutions to nonlinear evolution equations by means of the exp-function method. Sci. Bull. - “Politeh.” Univ. Buchar., Ser. A 74(1), 25–34 (2012)

    MathSciNet  MATH  Google Scholar 

  • Garcia, L.G., Haas, F., de Oliveira, L.P.L., Goedert, J.: Modified Zakharov equations for plasmas with quantum correction. Phys. Plasmas 12(1), 012302 (2005)

    Article  ADS  Google Scholar 

  • Ghosh, S., Bharutram, R.: Ion acoustic solitons and double layers in electron-positron-ion plasmas with dust particulates. Astrophys. Space Sci. 314(1–3), 121–127 (2010)

    ADS  Google Scholar 

  • Keane, A.J., Mushtaq, A., Wheatland, M.S.: Alfven solitons in a Fermionic quantum plasma. Phys. Rev. E 83(6), 066407 (2011)

    Article  ADS  Google Scholar 

  • Marklund, M.: Classical and quantum kinetics of the Zakharov system. Phys. Plasmas 12(8), 082110 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • Masood, W., Rizvi, H., Siddiq, M.: Obliquely propagating nonlinear structures in dissipative electron positron ion magnetoplasmas. Astrophys. Space Sci. (2012). doi:10.1007/s10509-010-0555-z

    Google Scholar 

  • Mehdipoor, M.: The characteristics of ion-acoustic shock waves in non-Maxwellian plasmas with G′/G-expansion method. Astrophys. Space Sci. 338(1), 73–79 (2012)

    Article  ADS  Google Scholar 

  • Misra, A.P., Shukla, P.K.: Pattern dynamics and spatiotemporal chaos in the quantum Zakharov equations. Phys. Rev. E 79(5), 056401 (2007)

    Article  ADS  Google Scholar 

  • Moslem, W.M., Ali, S., Shukla, P.K., Tang, X.Y., Rowlands, G.: Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 1–5 (2007)

    Google Scholar 

  • Pakzad, H.R.: Soliton energy of the Kadomtsev-Petviashvili equation in warm dusty plasma with variable dust charge, two temperature ions, and nonthermal electrons. Astrophys. Space Sci. 326(1), 69–75 (2010)

    Article  ADS  MATH  Google Scholar 

  • Tang, X.-Y., Shukla, P.K.: Lie symmetry analysis of the quantum Zakharov equations. Phys. Scr. 76(6), 665–668 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Wazwaz, A.-M.: Solitary waves solutions for extended forms of quantum Zakharov-Kuznetsov equations. Phys. Scr. 85, 025006 (2012)

    Article  ADS  Google Scholar 

  • Yan, Z.: Periodic, solitary and rational wave solutions of the 3D extended quantum Zakharov-Kuznetsov equation in dense quantum plasmas. Phys. Lett. A 373, 2432–2437 (2009)

    Article  ADS  MATH  Google Scholar 

  • Zhang, B.-G., Liu, Z.-R., Xiao, Q.: New exact solitary wave and multiple soliton solutions of quantum Zakharov-Kuznetsov equation. Appl. Math. Comput. 217, 392–402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Biswas.

Appendix

Appendix

Relations between values of A, B, C and corresponding F(ξ) in Riccati equation:

$$F'(\xi)=A+BF(\xi)+CF^2(\xi)$$

A

B

C

F

0

1

−1

\(\frac{1}{2}+\frac{1}{2}\tanh(\frac{1}{2}\xi)\)

0

−1

1

\(\frac{1}{2}-\frac{1}{2}\mathop{\mathrm{coth}}(\frac{1}{2}\xi)\)

\(\frac{1}{2}\)

0

\(-\frac{1}{2}\)

 coth(ξ)± csch(ξ), tanh(ξi sech(ξ)

1

0

−1

tanh(ξ), coth(ξ)

\(\frac{1}{2}\)

0

\(\frac{1}{2}\)

sec(ξ)+tan(ξ), csc(ξ)−cot(ξ)

\(-\frac{1}{2}\)

0

-\(\frac{1}{2}\)

sec(ξ)−tan(ξ), csc(ξ)+cot(ξ)

1(−1)

0

1(−1)

tanξcotξ

0

0

≠0

\(-\frac{1}{C\xi+\lambda}\) (λ is an arbitrary constant)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebadi, G., Mojaver, A., Milovic, D. et al. Solitons and other solutions to the quantum Zakharov-Kuznetsov equation. Astrophys Space Sci 341, 507–513 (2012). https://doi.org/10.1007/s10509-012-1072-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10509-012-1072-z

Keywords

Navigation