“Dark energy” in the Local Void

Abstract

The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified “dark energy”, or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∼5×1015M ) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this “dark repulsor” can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial “explosion” and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    As a consequence, the energy of a retarded-advanced photon pair in a gravitational field would be conserved, thus invalidating the Morrison (1958) argument against antigravity.

  2. 2.

    \(V_{\mathrm{pec}}^{\mathrm{LS}}\) and \(V_{\mathrm{pec}}^{\mathrm{Leo}}\) are calculated from (2), and have the correct difference of 259 km s−1 between them.

  3. 3.

    Actually there is some confusion about advanced radiation in the literature; for discussions around the issue of advanced radiation in general, see e.g. Davies (1975), Cramer (1980), and references therein.

  4. 4.

    However, in a recent paper, Benoit-Lévy and Chardin (2012) have shown that most of these observational constraints can also be explained by their quite different cosmology, based on the assumption of a matter-antimatter symmetric Universe.

  5. 5.

    See Hajdukovic (2011c) for an alternative interpretation of dark matter based on antigravity.

References

  1. Aaronson, M., Huchra, J., Mould, J., Schechter, P.L., Tully, R.B.: Astrophys. J. 258, 64 (1982)

    ADS  Article  Google Scholar 

  2. Amendola, L.: Mon. Not. R. Astron. Soc. 312, 521 (2000)

    ADS  Article  Google Scholar 

  3. Benoit-Lévy, A., Chardin, G.: Astron. Astrophys. 537, A78 (2012)

    ADS  Article  Google Scholar 

  4. Cabbolet, M.J.T.F.: Ann. Phys. 522, 699 (2010)

    Article  Google Scholar 

  5. Cai, R., Tuo, Z.: (2012). arXiv:1109.0941v5

  6. Capozziello, S., Cardone, V.F., Troisi, A.: Phys. Rev. D, Part. Fields 71, 043503 (2005)

    ADS  Article  Google Scholar 

  7. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D, Part. Fields 70, 043528 (2004)

    ADS  Article  Google Scholar 

  8. Chardin, G.: Nucl. Phys. A 558, 477 (1993)

    ADS  Article  Google Scholar 

  9. Chardin, G.: Hyperfine Interact. 109, 83 (1997)

    ADS  Article  Google Scholar 

  10. Chardin, G., Rax, J.-M.: Phys. Lett. B 282, 256 (1992)

    ADS  Article  Google Scholar 

  11. Cramer, J.G.: Phys. Rev. D, Part. Fields 22, 362 (1980)

    MathSciNet  ADS  Article  Google Scholar 

  12. Davies, P.C.W.: J. Phys. A, Math. Gen. 8, 272 (1975)

    ADS  Article  Google Scholar 

  13. Dutta, S., Maor, I.: Phys. Rev. D, Part. Fields 75, 063507 (2007)

    ADS  Article  Google Scholar 

  14. Dvali, G., Gabadadze, G., Porrati, M.: Phys. Lett. B 485, 208 (2000)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  15. Erdoğdu, P., Huchra, J.P., Lahav, O., et al.: Mon. Not. R. Astron. Soc. 368, 1515 (2006)

    ADS  Article  Google Scholar 

  16. Faber, S.M., Burstein, D.: In: Rubin, V.C., Coyne, G.V. (eds.) Large-Scale Motions in the Universe: A Vatican Study Week, pp. 115–167 (1988)

    Google Scholar 

  17. Fixsen, D.J., Cheng, E.S., Gales, J.M., et al.: Astrophys. J. 473, 576 (1996)

    ADS  Article  Google Scholar 

  18. Good, M.L.: Phys. Rev. 121, 311 (1961)

    MathSciNet  ADS  Article  Google Scholar 

  19. Hajdukovic, D.S.: Int. J. Theor. Phys. 49, 1023 (2010)

    MATH  Article  Google Scholar 

  20. Hajdukovic, D.S.: Adv. Astron. 2011, 196852 (2011a)

    Article  Google Scholar 

  21. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 219 (2011b)

    ADS  MATH  Article  Google Scholar 

  22. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 215 (2011c)

    ADS  MATH  Article  Google Scholar 

  23. Hoffman, G.L., Salpeter, E.E.: Astrophys. J. 263, 485 (1982)

    ADS  Article  Google Scholar 

  24. Jarosik, N., Bennett, C.L., Dunkley, J., et al.: Astrophys. J. Suppl. Ser. 192, 14 (2011)

    ADS  Article  Google Scholar 

  25. Kashlinsky, A., Atrio-Barandela, F., Ebeling, H., Edge, A., Kocevski, D.: Astrophys. J. 712, L81 (2010)

    ADS  Article  Google Scholar 

  26. Kocevski, D.D., Ebeling, H.: Astrophys. J. 645, 1043 (2006)

    ADS  Article  Google Scholar 

  27. Lynden-Bell, D., Faber, S.M., Burstein, D., et al.: Astrophys. J. 326, 19 (1988)

    ADS  Article  Google Scholar 

  28. Mohayaee, R., Tully, R.B.: Astrophys. J. 635, L113 (2005)

    ADS  Article  Google Scholar 

  29. Morrison, P.: Am. J. Phys. 26, 358 (1958)

    ADS  Article  Google Scholar 

  30. Ni, G.-J.: In: Dvoeglazov, V.V., Espinoza Garrido, A.A. (eds.) Relativity, Gravitation, Cosmology, pp. 123–136 (2004)

    Google Scholar 

  31. Nieto, M.M., Goldman, T.: Phys. Rep. 205, 221 (1991)

    ADS  Article  Google Scholar 

  32. Noyes, H.P.: Phys. Essays 21, 52 (2008)

    ADS  Article  Google Scholar 

  33. Noyes, H.P., Starson, S.: SLAC-PUB-5429 (1991)

  34. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993)

    Google Scholar 

  35. Peebles, P.J.E., Nusser, A.: Nature 465, 565 (2010)

    ADS  Article  Google Scholar 

  36. Peebles, P.J.E., Tully, R.B., Shaya, E.J.: (2011). arXiv:1105.5596v1

  37. Perlmutter, S., Aldering, G., Goldhaber, G., et al.: Astrophys. J. 517, 565 (1999)

    ADS  Article  Google Scholar 

  38. Raychaudhury, S.: Nature 342, 251 (1989)

    ADS  Article  Google Scholar 

  39. Riess, A.G., Filippenko, A.V., Challis, P., et al.: Astron. J. 116, 1009 (1998)

    ADS  Article  Google Scholar 

  40. Scaramella, R., Baiesi-Pillastrini, G., Chincarini, G., Vettolani, G., Zamorani, G.: Nature 338, 562 (1989)

    ADS  Article  Google Scholar 

  41. Schiff, L.I.: Phys. Rev. Lett. 1, 254 (1958)

    ADS  Article  Google Scholar 

  42. Schiff, L.I.: Proc. Natl. Acad. Sci. USA 45, 69 (1959)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  43. Shaya, E.J.: Astrophys. J. 280, 470 (1984)

    ADS  Article  Google Scholar 

  44. Thomas, S.A., Abdalla, F.B., Lahav, O.: Phys. Rev. Lett. 106, 241301 (2011)

    ADS  Article  Google Scholar 

  45. Tonry, J.L., Blakeslee, J.P., Ajhar, E.A., Dressler, A.: Astrophys. J. 530, 625 (2000)

    ADS  Article  Google Scholar 

  46. Tonry, J.L., Davis, M.: Astrophys. J. 246, 680 (1981)

    ADS  Article  Google Scholar 

  47. Tully, R.B.: In: Rubin, V.C., Coyne, G.V. (eds.) Large-Scale Motions in the Universe: A Vatican Study Week, pp. 169–177 (1988)

    Google Scholar 

  48. Tully, R.B., Shaya, E.J.: Astrophys. J. 281, 31 (1984)

    ADS  Article  Google Scholar 

  49. Tully, R.B., Shaya, E.J., Karachentsev, I.D., et al.: Astrophys. J. 676, 184 (2008)

    ADS  Article  Google Scholar 

  50. Tully, R.B., Shaya, E.J., Pierce, M.J.: Astrophys. J. Suppl. Ser. 80, 479 (1992)

    ADS  Article  Google Scholar 

  51. Villata, M.: Europhys. Lett. 94, 20001 (2011)

    ADS  Article  Google Scholar 

  52. Villata, M.: Astrophys. Space Sci. 337, 15 (2012)

    ADS  Article  Google Scholar 

  53. Walker, M.G., Peñarrubia, J.: Astrophys. J. 742, 20 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Villata.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Villata, M. “Dark energy” in the Local Void. Astrophys Space Sci 339, 7–12 (2012). https://doi.org/10.1007/s10509-012-0994-9

Download citation

Keywords

  • Gravitation
  • Cosmology: theory
  • Dark energy
  • Large-scale structure of Universe