Astrophysics and Space Science

, Volume 339, Issue 1, pp 1–5 | Cite as

Quantum vacuum and virtual gravitational dipoles: the solution to the dark energy problem?

Letter to the Editor

Abstract

The cosmological constant problem is the principal obstacle in the attempt to interpret dark energy as the quantum vacuum energy. We suggest that the obstacle can be removed, i.e. that the cosmological constant problem can be resolved by assuming that the virtual particles and antiparticles in the quantum vacuum have the gravitational charge of the opposite sign. The corresponding estimates of the cosmological constant, dark energy density and the equation of state for dark energy are in the intriguing agreement with the observed values in the present day Universe. However, our approach and the Standard Cosmology lead to very different predictions for the future of the Universe; the exponential growth of the scale factor, predicted by the Standard Cosmology, is suppressed in our model.

Keywords

Quantum vacuum Dark energy Cosmological constant problem gravitational dipole 

References

  1. Alfonso-Faus, A.: Astrophys. Space Sci. 318, 117 (2008) ADSCrossRefGoogle Scholar
  2. Alfonso-Faus, A.: Astrophys. Space Sci. 325, 113 (2011) ADSCrossRefGoogle Scholar
  3. Benoit-Levy, A., Chardin, G.: Astron. Astrophys. (2012). doi:10.1051/0004-6361/201016103
  4. Dirac, P.A.M.: Nature 139, 323 (1937) ADSMATHCrossRefGoogle Scholar
  5. Dirac, P.A.M.: Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 165, 199 (1938) ADSCrossRefGoogle Scholar
  6. Fahr, H.J., Sokaliwska, M.: Astrophys. Space. Sci. (2012) (accepted) Google Scholar
  7. Fullana, M.J., Alfonso-Faus, A.: Astrophys. Space Sci. (2012). doi:10.1007/s10509-011-0909-1
  8. Gine, J.: Towards a quantum Universe. Astrophys. Space. Sci. (2012) (accepted) Google Scholar
  9. Hajdukovic, D.S.: Astrophys. Space Sci. 326, 3 (2010a) ADSMATHCrossRefGoogle Scholar
  10. Hajdukovic, D.S.: Europhys. Lett. 89, 49001 (2010b) ADSCrossRefGoogle Scholar
  11. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 215 (2011a) ADSMATHCrossRefGoogle Scholar
  12. Hajdukovic, D.S.: Astrophys. Space Sci. 334, 215 (2011b) ADSMATHCrossRefGoogle Scholar
  13. Hajdukovic, D.S.: Adv. Astron. 196, 852 (2011c) Google Scholar
  14. Hajdukovic, D.S.: Mod. Phys. Lett. A 26, 1555 (2011d) ADSCrossRefGoogle Scholar
  15. Hajdukovic, D.S.: Astrophys. Space Sci. (2012). doi:10.1007/s10509-011-0938-9
  16. Hawking, S.V.: Commun. Math. Phys. 43, 199 (1975) MathSciNetADSCrossRefGoogle Scholar
  17. Nakamura, K., et al.: Review of particle physics. J. Phys. G, Nucl. Part. Phys. 37, 075021 (2010) ADSCrossRefGoogle Scholar
  18. Nieto, M.M., Goldman, T.: Phys. Rep. 205, 221 (1991) ADSCrossRefGoogle Scholar
  19. Santos, E.: Astrophys. Space Sci. 326, 7 (2010) ADSMATHCrossRefGoogle Scholar
  20. Santos, E.: Astrophys. Space Sci. 332, 423 (2011) ADSCrossRefGoogle Scholar
  21. Unruh, W.: Phys. Rev. D 14, 870 (1976) ADSCrossRefGoogle Scholar
  22. Villata, M.: Europhys. Lett. 94, 20001 (2011) ADSCrossRefGoogle Scholar
  23. Villata, M.: “Dark energy” in the local void. Astrophys. Space. Sci. (2012) (accepted) Google Scholar
  24. Weinberg, S.: Gravitation and Cosmology, p. 620. Wiley, New York (1972) Google Scholar
  25. Weinberg, S.: Rev. Mod. Phys. 61, 1–23 (1989) MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.PH Division CERNGeneva 23Switzerland

Personalised recommendations